
COMPOSITIONAL SCULPTING OF
ITERATIVE GENERATIVE PROCESSES

Timur Garipov∗
MIT CSAIL

Sebastiaan De Peuter
Aalto University

Ge Yang
MIT CSAIL

Institute for Artificial Intelligence
and Fundamental Interactions

Vikas Garg
Aalto University

YaiYai Ltd
Samuel Kaski

Aalto University
University of Manchester

Tommi Jaakkola
MIT CSAIL

ABSTRACT
High training costs of generative models and the need to fine-tune them for specific tasks have created
a strong interest in model reuse and composition. A key challenge in composing iterative generative
processes, such as GFlowNets and diffusion models, is that to realize the desired target distribution, all
steps of the generative process need to be coordinated, and satisfy delicate balance conditions. In this
work, we propose Compositional Sculpting: a general approach for defining compositions of iterative
generative processes. We then introduce a method for sampling from these compositions built on
classifier guidance. We showcase ways to accomplish compositional sculpting in both GFlowNets
and diffusion models. We highlight two binary operations — the harmonic mean (𝑝1 ⊗ 𝑝2) and the
contrast (𝑝1◑ 𝑝2) between pairs, and the generalization of these operations to multiple component
distributions. We offer empirical results on image and molecular generation tasks. Project codebase:
https://github.com/timgaripov/compositional-sculpting.

1 Introduction

Large-scale general-purpose pre-training of machine learning models has produced impressive results in computer
vision [1–3], image generation [4–6], natural language processing [7–11], robotics [12–14] and basic sciences [15]. By
distilling vast amounts of data, such models can produce powerful inferences that lead to emergent capabilities beyond
the specified training objective [16]. However, generic pre-trained models are often insufficient for specialized tasks in
engineering and basic sciences. Field-adaptation via techniques such as explicit fine-tuning on bespoke datasets [17],
human feedback [18], or cleverly designed prompts [19, 20] is therefore often required. An alternative approach is to
compose the desired distribution using multiple simpler component models.
Compositional generation [21–27] views a complex target distribution in terms of simpler pre-trained building blocks
which it can learn to mix and match into a tailored solution to a specialized task. Besides providing a way to combine and
reuse previously trained models, composition is a powerful modeling approach. A composite model fuses knowledge
from multiple sources: base models trained for different tasks, enabling increased capacity beyond that of any of
the base models in isolation. If each individual base model captures a certain property of the data, composing such
models provides a way to specify distributions over examples that exhibit multiple properties simultaneously [28]. The
need to construct complex distributions adhering to multiple constraints arises in numerous practical multi-objective
design problems such as multi-objective molecule generation [29–31]. In the context of multi-objective generation,
compositional modeling provides mechanisms for adjustment and control of the resulting distribution, which enables
exploration of different trade-offs between the objectives and constraints.

∗Correspondence to Timur Garipov (timur@csail.mit.edu).

ar
X

iv
:2

30
9.

16
11

5v
1

 [
cs

.L
G

]
 2

8
Se

p
20

23

https://github.com/timgaripov/compositional-sculpting

Compositional Sculpting of Iterative Generative Processes

(a) 𝑝1 (b) 𝑝2 (c) 𝑝1 ⊗ 𝑝2 (d) 𝑝1 ◑ 𝑝2 (e) 𝑝1 ◐ 𝑝2

H
ig
h

Lo
w

Figure 1: Composition operators. (a,b) base distributions 𝑝1 and 𝑝2. (c) harmonic mean of 𝑝1 and 𝑝2. (d) contrast of
𝑝1 with 𝑝2 (e) the reverse contrast 𝑝1◐ 𝑝2. Note ◑ is asymmetric. Grey lines show contours of PDF level sets of base
Gaussian distributions 𝑝1, 𝑝2. Black lines show contours of PDF levels sets of composite distributions.

Prior work on generative model composition [21, 23, 28] has developed operations for piecing together Energy-Based
Models (EBMs) via algebraic manipulations of their energy functions. For example, consider two distributions 𝑝1(𝑥) ∝
exp{−𝐸1(𝑥)} and 𝑝2(𝑥) ∝ exp{−𝐸2(𝑥)} induced by energy functions𝐸1 and𝐸2. Their product 𝑝prod(𝑥) ∝ 𝑝1(𝑥)𝑝2(𝑥) ∝
exp

(
−
(
𝐸1(𝑥) + 𝐸2(𝑥)

)) and negation 𝑝neg(𝑥) ∝ 𝑝1(𝑥)∕(𝑝2(𝑥))𝛾 ∝ exp
(
−
(
𝐸1(𝑥) − 𝛾𝐸2(𝑥)

)) correspond to operations
on the underlying energy functions.
Iterative generative processes including diffusion models [5, 32–34] and GFlowNets [35, 36] progressively refine coarse
objects into cleaner ones over multiple steps. The realization of effective compositions of these models is complicated
by the fact that simple alterations in their generation processes result in non-trivial changes in the distributions of the
final objects. For instance, the aforementioned product and negation between EBMs cannot be realized simply by means
of adding or subtracting associated score-functions. Prior work addresses these challenges by connecting diffusion
models with EBMs through annealed Markov-Chain Monte-Carlo (MCMC) inference. However, Metropolis-Hastings
corrections are required to ensure that the annealing process reproduces the desired distribution [27].
Jain et al. [31] develop Multi-Objective GFlowNets (MOGFNs), an extension of GFlowNets for multi-objective
optimization tasks. The goal of a vanilla GFlowNet model is to capture the distribution induced by a single reward
(objective) function 𝑝𝜃(𝑥) ∝ 𝑅(𝑥) (see Section 2.1 for details of GFlowNet formulation). A Multi-Objective GFlowNet
aims to learn a single conditional model that can realize distributions corresponding to various combinations (e.g.
a convex combination) of multiple reward functions. While a single MOGFN effectively realizes a spectrum of
compositions of base reward functions, the approach assumes access to the base rewards at training time. Moreover,
MOFGNs require the set of possible composition operations to be specified at generative model training time. In this
work, we address post hoc composition of pre-trained GFlowNets (or diffusion models) and provide a way to create
compositions that need not be specified in advance.
In this work, we introduce Compositional Sculpting, a general approach for the composition of pre-trained models.
We highlight two special examples of binary operations — harmonic mean: (𝑝1 ⊗ 𝑝2) and contrast: (𝑝1◑ 𝑝2). More
general compositions are obtained as conditional distributions in a probabilistic model constructed on top of pre-trained
base models. We show that these operations can be realized via classifier guidance. We provide results of empirical
verification of our method on molecular generation (with GFlowNets) and image generation (with diffusion models).

2 Background

2.1 Generative Flow Networks (GFlowNets)

GFlowNets [35, 36] are an approach for generating compositional objects (e.g. graphs). The objective of GFlowNet
training is specified by a “reward function” 𝑅(𝑥) ≥ 0 defined on the set of objects  . The objective is to learn a
generative model 𝑝(𝑥) that assigns more probability mass on high-reward objects. Formally, GFlowNets seek to produce
the distribution 𝑝(𝑥) = 𝑅(𝑥)∕𝑍, where 𝑍 =

∑
𝑥𝑅(𝑥).

Generative process. The generation of a complete object 𝑥 is realized through a sequence of incremental changes
of incomplete states 𝑠0 → 𝑠1 → … → 𝑠𝑛−1 → 𝑥 starting at the designated initial state 𝑠0. Formally, the structure of
possible generation trajectories 𝜏 = (𝑠0 → 𝑠1 → … → 𝑠𝑛−1 → 𝑥) is captured by a DAG ( ,) where  is the set of
states (both complete and incomplete) and  is the set of directed edges (actions) 𝑠 → 𝑠′. The set  has a designated
initial state 𝑠0 and the set of complete objects (terminal states)  is a subset of  . Each generation trajectory 𝜏 starts at
the initial state 𝑠0, follows the edges (𝑠 → 𝑠′) ∈  of the DAG, and terminates at one of the terminal states 𝑥 ∈  . We
use |𝜏| to denote the length of the trajectory (the number of transitions).

2

Compositional Sculpting of Iterative Generative Processes

This sequential generation process is controlled by a parameterized stochastic “forward policy” 𝑃𝐹 (𝑠′|𝑠; 𝜃) which for
each state 𝑠 ∈  ⧵  specifies a probability distribution over all possible successor states 𝑠′ ∶(𝑠 → 𝑠′) ∈ . Generation
is performed by starting at 𝑠0 and sequentially sampling transitions from the forward policy 𝑃𝐹 (⋅|⋅) until a terminal
state is reached.
2.2 Diffusion Models

Diffusion models, see 5, 32–34, 37) are a family of generative models developed for continuous domains. Given a
dataset of samples {𝑥̂𝑖}𝑛𝑖=1 forming the empirical distribution 𝑝̂(𝑥) = 1

𝑛
∑

𝑖 𝛿𝑥̂𝑖 (𝑥) in  = ℝ𝑑 , diffusion models seek to
approximate 𝑝̂(𝑥) via a generative process 𝑝(𝑥), which can then be used to generate new samples.
Stochastic Differential Equation (SDE) perspective. We discuss diffusion models from the perspective of stochastic
differential equations (SDE) [34]. A diffusion process is a noising process that gradually destroys the original “clean”
data 𝑥. It can be specified as a time-indexed collection of random variables {𝑥𝑡}𝑇𝑡=0 in  = ℝ𝑑 . We use 𝑝𝑡(⋅) to denote
the density of the distribution of 𝑥𝑡. The process interpolates between the data distribution 𝑝0(𝑥) = 𝑝̂(𝑥) at 𝑡 = 0, and
the prior distribution 𝑝𝑇 (𝑥) at 𝑡 = 𝑇 , which is typically constructed to have a closed form (e.g. standard normal) to
enable a simple sampling scheme. The evolution of 𝑥𝑡 is described by the “forward SDE” 𝑑𝑥𝑡 = 𝑓𝑡(𝑥𝑡) 𝑑𝑡 + 𝑔𝑡 𝑑𝑤𝑡,where 𝑤𝑡 is the standard Wiener process, the function 𝑓𝑡 ∶ ℝ𝑑 → ℝ𝑑 is called the drift coefficient and 𝑔𝑡 ∈ ℝ is called
the diffusion coefficient. Specific choices of 𝑓𝑡 and 𝑔𝑡 completely determine the process and give rise to the transition
kernel 𝑝𝑠𝑡(𝑥𝑡|𝑥𝑠) for 0 ≤ 𝑠 < 𝑡 ≤ 𝑇 (see [34] for examples).
Generative process. Song et al. [34] invoke a result from the theory of stochastic processes [38] which gives the
expression for the reverse-time process or “backward SDE”:

𝑑𝑥𝑡 =
[
𝑓𝑡(𝑥𝑡) − 𝑔2𝑡 ∇𝑥 log 𝑝𝑡(𝑥𝑡)

]
𝑑𝑡 + 𝑔𝑡 𝑑𝑤𝑡, (1)

where 𝑤𝑡 is the standard Wiener process in reversed time.
The backward SDE includes the known coefficients 𝑓𝑡, 𝑔𝑡, and the unknown score function ∇𝑥 log 𝑝𝑡(⋅) of the marginal
distribution 𝑝𝑡(⋅) at time 𝑡. This score function is estimated by a deep neural network 𝑠𝑡(𝑥; 𝜃) ≈ ∇𝑥 log 𝑝𝑡(𝑥) (called
“score-network”) with parameters 𝜃. Once the score-network 𝑠𝑡(⋅; 𝜃) is trained, samples can be generated via numerical
integration of (1).
2.3 Classifier Guidance in Diffusion Models

Classifier guidance [32, 39] is a technique for controllable generation in diffusion models. Suppose that each example 𝑥0 is
accompanied by a discrete class label 𝑦. The goal is to sample from the conditional distribution 𝑝0(𝑥0|𝑦). The Bayes rule
𝑝𝑡(𝑥𝑡|𝑦) ∝ 𝑝𝑡(𝑥𝑡)𝑝𝑡(𝑦|𝑥𝑡) implies the score-function decomposition ∇𝑥𝑡 log 𝑝𝑡(𝑥𝑡|𝑦) = ∇𝑥𝑡 log 𝑝𝑡(𝑥𝑡) + ∇𝑥𝑡 log 𝑝𝑡(𝑦|𝑥𝑡),where the first term is already approximated by a pre-trained unconditional diffusion model and the second term can
be derived from a time-dependent classifier 𝑝𝑡(𝑦|𝑥𝑡). Therefore, the stated goal can be achieved by first training the
classifier 𝑝𝑡(𝑦|𝑥𝑡) using noisy samples 𝑥𝑡 from the intermediate steps of the process, and then plugging in the expression
for the conditional score into the sampling process (1).
2.4 “Energy” Operations

Prior work introduced energy operations, “product” and “negation”, for energy-based [21, 23] and diffusion [27] models.
Given a pair of distributions 𝑝1(𝑥) ∝ exp{−𝐸1(𝑥)}, 𝑝2(𝑥) ∝ exp{−𝐸2(𝑥)} corresponding to the respective energy
functions 𝐸1 and 𝐸2, the “product” and “negation” operations are defined as

(𝑝1 prod 𝑝2)(𝑥) ∝ exp
{
−
(
𝐸1(𝑥) + 𝐸2(𝑥)

)}
∝ 𝑝1(𝑥)𝑝2(𝑥), (2)

(𝑝1 neg𝛾 𝑝2)(𝑥) ∝ exp
{
−
(
𝐸1(𝑥) − 𝛾𝐸2(𝑥)

)}
∝

𝑝1(𝑥)(
𝑝2(𝑥)

)𝛾 . (3)

The product distribution (𝑝1 prod 𝑝2)(𝑥): (a) assigns relatively high likelihoods to points 𝑥 that have sufficiently high
likelihoods under both base distributions at the same time; (b) assigns relatively low likelihoods to points 𝑥 that have
close-to-zero likelihood under one (or both) 𝑝1, 𝑝2. The negation distribution (𝑝1 neg𝛾 𝑝2)(𝑥) (a) assigns relatively high
likelihood to points 𝑥 that are likely under 𝑝1 but unlikely under 𝑝2; (b) assigns relatively low likelihood to points 𝑥
that have low likelihood under 𝑝1 and high likelihood under 𝑝2. The parameter 𝛾 > 0 controls the strength of negation.
Informally, the product concentrates on points that are common in both 𝑝1 and 𝑝2, and the negation concentrates on
points that are common in 𝑝1 and uncommon in 𝑝2. If 𝑝1 and 𝑝2 capture objects demonstrating two distinct concepts

3

Compositional Sculpting of Iterative Generative Processes

(e.g. 𝑝1: images of circles; 𝑝2 images of green shapes), it is fair to say (again, informally) that the product and the
negation resemble the logical operations of concept-intersection (“circle” AND “green”) and concept-negation (“circle”
AND NOT “green”) respectively.
The “product” and “negation” can be realized in a natural way in energy-based models through simple algebraic
operations on energy functions. However, realizing these operations on diffusion models is not as straightforward. The
reason is that sampling in diffusion models requires the coordination of multiple steps of the denoising process. The
simple addition of the time-dependent score functions does not result in a score function that represents the diffused
product distribution2. Du et al. [27] develop a method that corrects the sum-of-score-networks sampling via additional
MCMC iterations nested under each step of the generation process.

3 Related Work
Generative model composition. Hinton [28] developed a contrastive divergence minimization procedure for training
products of tractable energy-based models. Learning mixtures of Generative Adversarial Networks has been addressed
in [40], where the mixture components are learned simultaneously, and in [41], where the components are learned one by
one in an adaptive boosting fashion. Grover and Ermon [42] developed algorithms for additive and multiplicative boosting
of generative models. Following up on energy-based model operations [21, 28], Du et al. [23] studied the composition of
deep energy-based models. Du et al. [27] developed algorithms for sampling from energy-based compositions (products,
negations) of diffusion models, related to the focus of our work. The algorithm in [27] introduces additional MCMC
sampling steps at each diffusion generation step to correct the originally biased sampling process (based on an algebraic
combination of individual score functions) toward the target composition.
Our work proposes a new way to compose pre-trained diffusion models and introduces an unbiased sampling process
based on classifier guidance to sample from the compositions. This avoids the need for corrective MCMC sampling
required in prior work. Our work further applies to GFlowNets, and is, to the best of our knowledge, the first to address
the composition of pre-trained GFlowNets.
This work focuses on the composition of pre-trained models. Assuming that each pre-trained model represents the
distribution of examples demonstrating certain concepts (e.g. molecular properties), the composition of models is
equivalent to concept composition (e.g. property “A” and property “B” satisfied simultaneously). The inverse problem
is known as “unsupervised concept discovery”, where the goal is to automatically discover composable concepts from
data. Unsupervised concept discovery and concept composition methods have been proposed for energy-based models
[24] and for text-to-image diffusion models [43].
Controllable generation. Generative model composition is a form of post-training control of the generation process,
an established area of research in generative modeling. A simple approach to control is conditional generation, which can
be achieved by training a conditional generative model 𝑝𝜃(𝑥|𝑐) on pairs (𝑥, 𝑐) of objects 𝑥 and conditioning information
𝑐. Types of conditioning information can include class labels [39] or more structured data such as text prompts [4, 6, 44],
semantic maps, and other images for image-to-image translation [4]. This approach assumes that the generation control
operations are specified at training time and the training data is annotated with conditioning attributes. Classifier
guidance [32] provides a way to generate samples from conditional distributions that need not be specified at training
time. The guidance is realized by a classifier that is trained on examples 𝑥𝑡 (both clean and noisy) accompanied by
conditioning labels 𝑐. Dhariwal and Nichol [39] apply classifier guidance on top of unconditional or conditional diffusion
models to improve the fidelity of generated images. Ho and Salimans [45] develop classifier-free guidance where the
conditional and unconditional score functions are trained simultaneously and combined at inference time to guide the
generation. In ControlNet [17], an additional network is trained to enable a pre-trained diffusion model to incorporate
additional, previously unavailable, conditioning information. Meng et al. [46] and Couairon et al. [47] develop semantic
image editing methods based on applying noise to the original image and then running the reverse denoising process to
generate an edited image, possibly conditioned on a segmentation mask [47].
Similar to conditional diffusion models, conditional GFlowNets have been used to condition generation on reward
exponents [36] or combinations of multiple predefined reward functions [31].
Note that the methods developed in this work can be combined with conditional generative models, for example,
conditional diffusion models (or GFlowNets) 𝑝(𝑥|𝑐1),… , 𝑝(𝑥|𝑐𝑚) can act as base generative models to be composed.
Compositional generalization. The notion of compositionality has a broad spectrum of interpretations across a
variety of disciplines including linguistics, cognitive science, and philosophy. Hupkes et al. [48] collect a list of aspects
of compositionality from linguistical and philosophical theories and designs practical tests for neural language models

2formally, ∇𝑥𝑡 log
(
∫ 𝑝0𝑡(𝑥𝑡|𝑥0)𝑝1(𝑥0)𝑝2(𝑥0) 𝑑𝑥0

)
≠ ∇𝑥𝑡 log

(
∫ 𝑝0𝑡(𝑥𝑡|𝑥0)𝑝1(𝑥0) 𝑑𝑥0

)
+ ∇𝑥𝑡 log

(
∫ 𝑝0𝑡(𝑥𝑡|𝑥0)𝑝2(𝑥0) 𝑑𝑥0

); we
refer the reader to [27] for more details on the issue.

4

Compositional Sculpting of Iterative Generative Processes

covering all aspects. Conwell and Ullman [49] empirically examine the relational understanding of DALL-E 2 [50],
a text-guided image generation model, and point out limitations in the model’s ability to capture relations such as
“in”, “on”, “hanging over”, etc. In this work, we focus on a narrow but well-defined type of composition where we
seek to algebraically combine (compose) probability densities in a controllable fashion, such that we can emphasize or
de-emphasize regions in the data space where specific base distributions have high density. Our methods are developed
for the setting where we are given access to GFlowNets or diffusion models which can generate samples from the
probability distributions we wish to compose.
Connections between GFlowNets and diffusion models. We develop composition operations and methods for
sampling from composite distributions for both GFlowNets and diffusion models. The fact that similar methods apply
to both is rooted in deep connections between the two modeling frameworks. GFlowNets were initially developed for
generating discrete (structured) data [36] and diffusion models were initially developed for continuous data [5, 32].
Lahlou et al. [51] develop an extension of GFlowNets for DAGs with continuous state-action spaces. Zhang et al. [52]
point out unifying connections between GFlowNets and other generative model families, including diffusion models.
Diffusion models in a fixed-time discretization can be interpreted as continuous GFlowNets of a certain structure. Zhang
et al. [52] notice that the discrete DAG flow-matching condition, central to mathematical foundations of GFlowNets
[35], is analogous to the Fokker-Planck equation (Kolmogorov forward equation), underlying mathematical analysis of
continuous-time diffusion models [34]. In this work, we articulate another aspect of the relation between GFlowNets
and diffusion models: in Section 5.1 we derive the expressions for mixture GFlowNet policies and classifier-guided
GFlowNet policies analogous to those derived for diffusion models in prior work [32, 39, 53, 54].

4 Compositional Sculpting of Generative Models

Consider a scenario where we can access a number of pre-trained generative models. Each of these “base models” gives
rise to a generative distribution 𝑝𝑖(𝑥) over a common domain  . We may wish to compose these distributions such that
we can, say, draw samples that are likely to arise from 𝑝1(𝑥) and 𝑝2(𝑥), or that are likely to arise from 𝑝1(𝑥) but not
from 𝑝2(𝑥). In other words, we wish to specify a composition whose generative distribution we can shape to emphasize
and de-emphasize specific base models.

4.1 Binary Composition Operations

For the moment, let us focus on controllably composing two base models. One option is to specify the composition as a
weighted combination 𝑝(𝑥) =

∑2
𝑖=1 𝜔𝑖𝑝𝑖(𝑥) with positive weights 𝜔1, 𝜔2 which sum to one. These weights allow us to

set the prevalence of each base model in the composition. However, beyond that our control over the composition is
limited. We cannot emphasize regions where, say, 𝑝1 and 𝑝2 both have high density, or de-emphasize regions where 𝑝2has high density.
A much more flexible method for shaping a prior distribution 𝑝(𝑥) to our desires is conditioning. Following Bayesian
inference methodology, we know that when we condition 𝑥 on some observation 𝑦, the resulting posterior takes the
form 𝑝(𝑥|𝑦) ∝ 𝑝(𝑦|𝑥)𝑝(𝑥). Points 𝑥 that match observation 𝑦 according to 𝑝(𝑦|𝑥) will have increased density, whereas
the density of points that do not match it decreases. Intuitively, the term 𝑝(𝑦|𝑥) has shaped the prior 𝑝(𝑥) according to 𝑦.
If we define the observation 𝑦1 ∈ {1, 2} as the event that 𝑥 was generated by a specific base model, we can shape the
prior based on the densities of the base models. We start by defining a uniform prior over 𝑦𝑘, and by defining the
conditional density 𝑝(𝑥|𝑦1 = 𝑖) to represent the fact that 𝑥 was generated from 𝑝𝑖(𝑥). This gives us the following model:

𝑝(𝑥|𝑦1=1) = 𝑝1(𝑥), 𝑝(𝑥|𝑦1=2) = 𝑝2(𝑥), 𝑝(𝑦1=1) = 𝑝(𝑦1=2) = 1
2
, 𝑝(𝑥) =

2∑
𝑖=1

𝑝(𝑥|𝑦1= 𝑖)𝑝(𝑦1= 𝑖), (4)

Notice that under this model, the prior 𝑝(𝑥) is simply a uniform mixture of the base models. The posterior probability
𝑝(𝑦1=1|𝑥) implied by this model tells us how likely it is that 𝑥 was generated by 𝑝1(𝑥) rather than 𝑝2(𝑥):

𝑝(𝑦1=1|𝑥) = 1 − 𝑝(𝑦1=2|𝑥) = 𝑝1(𝑥)
𝑝1(𝑥) + 𝑝2(𝑥)

, (5)

Note that 𝑝(𝑦1=1|𝑥) is the output of the optimal classifier trained to tell apart distributions 𝑝1(𝑥) and 𝑝2(𝑥).
The goal stated at the beginning of this section was to realize compositions which would generate samples likely to arise
from both 𝑝1(𝑥) and 𝑝2(𝑥) or likely to arise from 𝑝1(𝑥) but not 𝑝2(𝑥). To this end we introduce a second observation
𝑦2 ∈ {1, 2} such that 𝑦1 and 𝑦2 are independent and identically distributed given 𝑥. The resulting full model and inferred

5

Compositional Sculpting of Iterative Generative Processes

posterior are:
𝑝(𝑥, 𝑦1, 𝑦2) = 𝑝(𝑥)𝑝(𝑦1|𝑥)𝑝(𝑦2|𝑥), 𝑝(𝑥) = 1

2
𝑝1(𝑥) +

1
2
𝑝2(𝑥), 𝑝(𝑦𝑘= 𝑖|𝑥) = 𝑝𝑖(𝑥)

𝑝1(𝑥) + 𝑝2(𝑥)
, 𝑘, 𝑖 ∈ {1, 2}, (6)

𝑝(𝑥|𝑦1= 𝑖, 𝑦2=𝑗) ∝ 𝑝(𝑥)𝑝(𝑦1= 𝑖|𝑥)𝑝(𝑦2=𝑗|𝑥) ∝ 𝑝𝑖(𝑥)𝑝𝑗(𝑥)
𝑝1(𝑥) + 𝑝2(𝑥)

. (7)
The posterior 𝑝(𝑥|𝑦1= 𝑖, 𝑦2=𝑗) shows clearly how conditioning on the observations 𝑦1, 𝑦2 has shaped the prior mixture
into a new expression which accentuates regions in the posterior where the observed base models 𝑖, 𝑗 have high density.
Conditioning on observations 𝑦1=1 (“𝑥 is likely to have been drawn from 𝑝1 rather than 𝑝2”) and 𝑦2=2 (“𝑥 is likely to
have been drawn from 𝑝2 rather than 𝑝1”), or equivalently 𝑦1=2, 𝑦2=1, results in the posterior distribution

(𝑝1 ⊗ 𝑝2)(𝑥) ∶= 𝑝(𝑥|𝑦1=1, 𝑦2=2) ∝
𝑝1(𝑥)𝑝2(𝑥)

𝑝1(𝑥) + 𝑝2(𝑥)
. (8)

We will refer to this posterior as the “harmonic mean of 𝑝1 and 𝑝2”, and denote it as a binary operation 𝑝1 ⊗ 𝑝2.
Its value is high only at points that have high likelihood under both 𝑝1(𝑥) and 𝑝2(𝑥) at the same time (Figure 1(c)).
Thus, the harmonic mean is an alternative to the product operation for EBMs. The harmonic mean is commutative
(𝑝1⊗𝑝2 = 𝑝2⊗𝑝1) and is undefined when 𝑝1 and 𝑝2 have disjoint supports, since then the RHS of (8) is zero everywhere.
Conditioning on observations 𝑦1=1 (“𝑥 is likely to have been drawn from 𝑝1 rather than 𝑝2”) and 𝑦2=1 (same) results
in the posterior distribution

(𝑝1◑ 𝑝2)(𝑥) ∶= 𝑝(𝑥|𝑦1=1, 𝑦2=1) ∝
(
𝑝1(𝑥)

)2
𝑝1(𝑥) + 𝑝2(𝑥)

. (9)
We refer to this operation, providing an alternative to the negation operation in EBMs, as the “contrast of 𝑝1 and
𝑝2”, and will denote it as a binary operator (𝑝1◑ 𝑝2)(𝑥). The ratio in equation (9) is strictly increasing as a function
of 𝑝1(𝑥) and strictly decreasing as a function of 𝑝2(𝑥), so that the ratio is high when 𝑝1(𝑥) is high and 𝑝2(𝑥) is low
(Figure 1(d)). The contrast is not commutative (𝑝1◑ 𝑝2 ≠ 𝑝2◑ 𝑝1, unless 𝑝1 = 𝑝2). We will denote the reverse contrast
as 𝑝1◐ 𝑝2 = 𝑝2◑ 𝑝1.
Note that the original distributions 𝑝1 and 𝑝2 can be expressed as mixtures of the harmonic mean and the contrast
distributions:
𝑝1 = 𝑍⊗(𝑝1 ⊗ 𝑝2) +𝑍◑ (𝑝1◑ 𝑝2), 𝑝2 = 𝑍⊗(𝑝1 ⊗ 𝑝2) +𝑍◑ (𝑝2◑ 𝑝1), 𝑍⊗ =

∑
𝑥

𝑝1(𝑥)𝑝2(𝑥)
𝑝1(𝑥) + 𝑝2(𝑥)

= 1 −𝑍◑ .

Controlling the individual contributions of 𝑝1 and 𝑝2 to the composition. We modify model (6) and introduce an
interpolation parameter 𝛼 in order to have more control over the extent of individual contributions of 𝑝1 and 𝑝2 to the
composition:

𝑝(𝑥, 𝑦1, 𝑦2; 𝛼) = 𝑝(𝑥)𝑝(𝑦1|𝑥)𝑝(𝑦2|𝑥; 𝛼), 𝑝(𝑥) = 1
2
𝑝1(𝑥) +

1
2
𝑝2(𝑥), (10a)

𝑝(𝑦1= 𝑖|𝑥) = 𝑝𝑖(𝑥)
𝑝1(𝑥) + 𝑝2(𝑥)

, 𝑝(𝑦2= 𝑖|𝑥; 𝛼)=
(
𝛼𝑝1(𝑥)

)[𝑖=1]
⋅
(
(1−𝛼)𝑝2(𝑥)

)[𝑖=2]
𝛼𝑝1(𝑥) + (1 − 𝛼)𝑝2(𝑥)

, (10b)
where 𝛼 ∈ (0, 1) and [⋅] denotes the indicator function. Conditional distributions in this model give harmonic
interpolation3 and parameterized contrast:

(𝑝1 ⊗(1−𝛼) 𝑝2)(𝑥) ∝
𝑝1(𝑥)𝑝2(𝑥)

𝛼𝑝1(𝑥) + (1 − 𝛼)𝑝2(𝑥)
, (𝑝1◑ (1−𝛼) 𝑝2)(𝑥) ∝

(
𝑝1(𝑥)

)2
𝛼𝑝1(𝑥) + (1 − 𝛼)𝑝2(𝑥)

. (11)

Comparison with “energy” operations. The harmonic mean and contrast operations we have introduced here are
anologous to the product and negation operations for EBMs respectively. Although the harmonic mean and product
operations are quite similar in practice, unlike the negation operation our proposed contrast operation always results in
a valid probability distribution. Figure 2 shows the results of these operations applied to two Gaussian distributions.
The harmonic mean and product, shown in panel (b), are both concentrated on points that have high probability under
both Gaussians. Figure 2(c) shows parameterized contrasts 𝑝1◑ (1−𝛼)𝑝2 at different values of 𝛼, and panel (d) shows
negations 𝑝1 neg𝛾 𝑝2 at different values of 𝛾 . The effect of negation at 𝛾 = 0.1 resembles the effect of the contrast
operation: the density retreats from the high likelihood region of 𝑝2. However, as 𝛾 increases to 0.5 the distribution starts
to concentrate excessively on the values 𝑥 < −3. This is due to the instability of division 𝑝1(𝑥)∕(𝑝2(𝑥))𝛾 in regions where
𝑝2(𝑥) → 0. Proposition B.1 in Appendix B shows that the negation 𝑝1 neg𝛾 𝑝2 in many cases results in an improper
(non-normalizable) distribution.

3the harmonic interpolation approaches 𝑝1 when 𝛼 → 0 and 𝑝2 when 𝛼 → 1

6

Compositional Sculpting of Iterative Generative Processes

−4 −3 −2 −1 0 1 2 3 4
x

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

p(
x)

p1
p2

(a) Base distributions 𝑝1, 𝑝2

−4 −3 −2 −1 0 1 2 3 4
x

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

p(
x)

p1⊗ p2
p1 prod p2

(b) HM (ours), Product
−4 −3 −2 −1 0 1 2 3 4

x
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

p(
x)

� = 0.001
� = 0.050
� = 0.500

(c) Contrasts 𝑝1 ◑ (1−𝛼) 𝑝2 (ours)
−4 −3 −2 −1 0 1 2 3 4

x
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

p(
x)

 = 0.50

 = 0.25

 = 0.10

(d) Negations 𝑝1 neg𝛾 𝑝2

Figure 2: Compositional sculpting and energy operations applied to 1D Gaussian distributions. (a) Densities of
base 1D Gaussian distributions 𝑝1(𝑥) =  (𝑥; −5∕4, 1), 𝑝2(𝑥) =  (𝑥; 5∕4, 1∕2). (b) harmonic mean 𝑝1 ⊗ 𝑝2 and product
𝑝1 prod 𝑝2 (c) parameterized contrasts 𝑝1◑(1−𝛼) 𝑝2 at different values of 𝛼 (d) negations 𝑝1 neg𝛾 𝑝2 at different values
of 𝛾 . The curves show the probability density functions of base distributions and their compositions.
Operation chaining. As the binary operations we have introduced result in proper distributions, we can create new
𝑁-ary operations by chaining binary (and 𝑁-ary) operations together. For instance, chaining binary harmonic means
gives the harmonic mean of three distributions

((𝑝1 ⊗ 𝑝2)⊗ 𝑝3)(𝑥) = (𝑝1 ⊗ (𝑝2 ⊗ 𝑝3))(𝑥) ∝
𝑝1(𝑥)𝑝2(𝑥)𝑝3(𝑥)

𝑝1(𝑥)𝑝2(𝑥) + 𝑝1(𝑥)𝑝3(𝑥) + 𝑝2(𝑥)𝑝3(𝑥)
. (12)

4.2 Compositional Sculpting: General Approach

The approach we used above for specifying compositions of two base models controlled by two observations can be
generalized to compositions of 𝑚 base models 𝑝1(𝑥),… , 𝑝𝑚(𝑥) controlled by 𝑛 observations. At the end of the previous
section we showed that operator chaining can already realize compositions of 𝑚 base models. However, our generalized
method allows us to specify compositions more flexibly, and results in different compositions from operator chaining.
We propose to define an augmented probabilistic model 𝑝(𝑥, 𝑦1,… , 𝑦𝑛) as a joint distribution over the original objects
𝑥 ∈  and 𝑛 observation variables 𝑦1 ∈  ,… , 𝑦𝑛 ∈  where  = {1,… , 𝑛}. By defining appropriate conditionals
𝑝(𝑦𝑘|𝑥) we will be able to controllably shape a prior 𝑝(𝑥) into a posterior 𝑝(𝑥|𝑦1,… , 𝑦𝑛) based on the base models.
As in the binary case, we propose to use a uniformly-weighted mixture of the base distributions 𝑝(𝑥) = 1

𝑚
∑𝑚

𝑖=1 𝑝𝑖(𝑥).
The support of this mixture is the union of the supports of the base models: ⋃𝑚

𝑖=1 supp{𝑝𝑖(𝑥)} = supp{𝑝(𝑥)}. This is
essential as the prior can only be shaped in places where it has non-zero density. As before we define the conditionals
𝑝(𝑦𝑘 = 𝑖|𝑥) to correspond to the observation that 𝑥 was generated by base model 𝑖. This resulting full model is

𝑝(𝑥, 𝑦1,… , 𝑦𝑛) = 𝑝(𝑥)
𝑛∏

𝑘=1
𝑝(𝑦𝑘|𝑥), 𝑝(𝑥) = 1

𝑚

𝑚∑
𝑖=1

𝑝𝑖(𝑥), (13)

𝑝(𝑦𝑘= 𝑖) = 1
𝑚

∀𝑘 ∈ {1,… , 𝑛}, 𝑝(𝑦𝑘= 𝑖|𝑥) = 𝑝𝑖(𝑥)∑𝑚
𝑗=1 𝑝𝑗(𝑥)

∀𝑘 ∈ {1,… , 𝑛}. (14)

Note that under this model the mixture can be represented as the marginal of the joint distribution 𝑝(𝑥, 𝑦𝑘) = 𝑝(𝑥|𝑦𝑘)𝑝(𝑦𝑘)where 𝑦 ∈ {1,… , 𝑚} for any one of the observations 𝑦𝑘.
The inferred posterior over 𝑥 for this model is

𝑝(𝑥|𝑦1= 𝑖1,… , 𝑦𝑛= 𝑖𝑛) ∝ 𝑝(𝑥)𝑝(𝑦1= 𝑖1,… , 𝑦𝑛= 𝑖𝑛|𝑥) (15)

∝ 𝑝(𝑥)
𝑛∏

𝑘=1
𝑝(𝑦𝑘= 𝑖𝑘|𝑥) ∝

(𝑛∏
𝑘=1

𝑝𝑖𝑘 (𝑥)

)/(𝑚∑
𝑗=1

𝑝𝑗(𝑥)

)𝑛−1

. (16)

The posterior 𝑝(𝑥|𝑦1 = 𝑖1,… , 𝑦𝑛 = 𝑖𝑛) is a composition of distributions {𝑝𝑖(𝑥)}𝑚𝑖=1 that can be adjusted by choosing
values for 𝑦1,… , 𝑦𝑛. By adding or omitting an observation 𝑦𝑘= 𝑖 we can sculpt the posterior to our liking, emphasizing
or de-emphasizing regions of  where 𝑝𝑖 has high density. The observations can be introduced with multiplicities
(e.g., 𝑦1 = 1, 𝑦2 = 1, 𝑦3 = 2) to further strengthen the effect. Moreover, one can choose to introduce all observations
simultaneously as in (15) or sequentially as in (16). As we show below (Section 5.1 for GFlowNets; Section 5.3 for
diffusion models), the composition (15) can be realized by a sampling policy that can be expressed as a function of the
pre-trained (base) sampling policies.

7

Compositional Sculpting of Iterative Generative Processes

Special instances and general formulation. The general approach outlined in this section is not limited to choices
we made to construct the model in equation (13), i.e. 𝑝(𝑥) does not have to be a uniformly weighted mixture of the
base distributions, 𝑦1,… , 𝑦𝑛 do not have to be independent and identically distributed given 𝑥, and different choices of
the likelihood 𝑝(𝑦= 𝑖|𝑥) are possible. For instance, the parameterized binary operations (11) are derived from a model
where the likelihoods of the observations 𝑝(𝑦1|𝑥), 𝑝(𝑦2|𝑥) differ.
Sampling from conditional distributions via classifier guidance. In Section 5 we introduce a method that allows us
to sample from compositions of distributions 𝑝1,… , 𝑝𝑚 implied by a chosen set of variables 𝑦1,… , 𝑦𝑛. To do this, we
note the similarity between (15) and classifier guidance. Indeed, we can sample from the posterior by applying classifier
guidance to 𝑝(𝑥). Classifier guidance can either be applied in a single shot as in (15), or sequentially as in (16). Any
chain of operations can be realized via sequential guidance with a new classifier trained at each stage of the chaining.
The classifier can be trained on samples generated from the pre-trained base models 𝑝1,… , 𝑝𝑚. We show how to apply
this idea to GFlowNets (Sections 5.1, 5.2) and diffusion models (Sections 5.3, 5.4).

5 Compositional Sculpting of Iterative Generative Processes

5.1 Composition of GFlowNets

We will now cover how the model above can be applied to compose GFlowNets, and how one can use classifier guidance
to sample from the composition. Besides a sample 𝑥 from 𝑝𝑖(𝑥), a GFlowNet also generates a trajectory 𝜏 which ends in
the state 𝑥. Thus, we extend the model 𝑝(𝑥, 𝑦1,… , 𝑦𝑛), described above, and introduce 𝜏 as a variable with conditional
distribution 𝑝(𝜏|𝑦𝑘= 𝑖) =

∏|𝜏|−1
𝑡=0 𝑝𝑖,𝐹 (𝑠𝑡+1|𝑠𝑡), where 𝑝𝑖,𝐹 is the forward policy of the GFlowNet that samples from 𝑝𝑖.

Our approach for sampling from the composition is conceptually simple. Given 𝑚 base GFlowNets that sample from
𝑝1,… , 𝑝𝑚 respectively, we start by defining the prior 𝑝(𝑥) as the uniform mixture of these GFlowNets. Proposition 5.1
shows that this mixture can be realized by a GFlowNet policy which can be constructed directly from the forward
policies of the base GFlowNets. We then apply classifier guidance to this mixture to sample from the composition.
Proposition 5.2 shows that classifier guidance results in a new GFlowNet policy which can be constructed directly from
the GFlowNet being guided.
Proposition 5.1 (GFlowNet mixture policy). Suppose distributions 𝑝1(𝑥),… , 𝑝𝑚(𝑥) are realized by GFlowNets with
forward policies 𝑝1,𝐹 (⋅|⋅),… , 𝑝𝑚,𝐹 (⋅|⋅). Then, the mixture distribution 𝑝M(𝑥) =

∑𝑚
𝑖=1 𝜔𝑖𝑝𝑖(𝑥) with 𝜔1,… , 𝜔𝑚 ≥ 0 and∑𝑚

𝑖=1 𝜔𝑖 = 1 is realized by the GFlowNet forward policy

𝑝M,𝐹 (𝑠′|𝑠) =
𝑚∑
𝑖=1

𝑝(𝑦 = 𝑖|𝑠)𝑝𝑖,𝐹 (𝑠′|𝑠), (17)

where 𝑦 is a random variable such that the joint distribution of a GFlowNet trajectory 𝜏 and 𝑦 is given by 𝑝(𝜏, 𝑦= 𝑖) =
𝜔𝑖𝑝𝑖(𝜏) for 𝑖 ∈ {1,… , 𝑚}.

The proof of Proposition 5.1 is provided in Appendix C.1.
Proposition 5.2 (GFlowNet classifier guidance). Consider a joint distribution 𝑝(𝑥, 𝑦) over a discrete space  × such
that the marginal distribution 𝑝(𝑥) is realized by a GFlowNet with forward policy 𝑝𝐹 (⋅|⋅). Further, assume that the joint
distribution of 𝑥, 𝑦, and GFlowNet trajectories 𝜏 = (𝑠0 → … → 𝑠𝑛 = 𝑥) decomposes as 𝑝(𝜏, 𝑥, 𝑦) = 𝑝(𝜏, 𝑥)𝑝(𝑦|𝑥), i.e.
𝑦 is independent of the intermediate states 𝑠0,… , 𝑠𝑛1 in 𝜏 given 𝑥. Then,

1. For all non-terminal nodes 𝑠 ∈  ⧵  in the GFlowNet DAG ( ,), the probabilities 𝑝(𝑦|𝑠) satisfy

𝑝(𝑦|𝑠) = ∑
𝑠′∶(𝑠→𝑠′)∈

𝑝𝐹 (𝑠′|𝑠)𝑝(𝑦|𝑠′). (18)

2. The conditional distribution 𝑝(𝑥|𝑦) is realized by the classifier-guided policy

𝑝𝐹 (𝑠′|𝑠, 𝑦) = 𝑝𝐹 (𝑠′|𝑠)𝑝(𝑦|𝑠
′)

𝑝(𝑦|𝑠) . (19)

Note that (18) ensures that 𝑝𝐹 (𝑠′|𝑠, 𝑦) is a valid policy, i.e. ∑𝑠′∶(𝑠→𝑠′)∈ 𝑝𝐹 (𝑠′|𝑠, 𝑦) = 1. The proof of Proposition 5.2
is provided in Appendix C.2.
Proposition 5.1 is an analogous to results on mixtures of diffusion models (Peluchetti 53, Theorem 1, Lipman et al.
54, Theorem 1). Proposition 5.2 is analogous to classifier guidance for diffusion models [32, 39]. To the best of our
knowledge, our work is the first to derive both results for GFlowNets.

8

Compositional Sculpting of Iterative Generative Processes

Both equations (17) and (19) involve the inferential distribution 𝑝(𝑦|𝑠). Practical implementations of both mixture and
conditional forward policies, therefore, require training a classifier on trajectories sampled from the given GFlowNets.
Theorem 5.3 summarizes our approach.
Theorem 5.3. Suppose distributions 𝑝1(𝑥),… , 𝑝𝑚(𝑥) are realized by GFlowNets with forward policies 𝑝1,𝐹 (⋅|⋅), … ,
𝑝𝑚,𝐹 (⋅|⋅) respectively. Let 𝑦1,… , 𝑦𝑛 be random variables defined by (13). Then, the conditional 𝑝(𝑥|𝑦1,… , 𝑦𝑛) is
realized by the forward policy

𝑝𝐹 (𝑠′|𝑠, 𝑦1,… , 𝑦𝑛) =
𝑝(𝑦1,… , 𝑦𝑛|𝑠′)
𝑝(𝑦1,… , 𝑦𝑛|𝑠)

𝑚∑
𝑖=1

𝑝𝑖,𝐹 (𝑠′|𝑠)𝑝(𝑦= 𝑖|𝑠) (20)

Note that the result of conditioning on observations 𝑦1,… , 𝑦𝑛 is just another GFlowNet policy. Therefore, to condition
on more observations and build up the composition further, we can simply apply classifier guidance again to the policy
constructed in Theorem 5.3.
5.2 Classifier Training (GFlowNets)

The evaluation of policy (20) requires knowledge of the probabilities 𝑝(𝑦1,… , 𝑦𝑛|𝑠). The probabilities 𝑝(𝑦|𝑠) required
for constructing the mixture can be derived from 𝑝(𝑦1,… , 𝑦𝑛|𝑠). These probabilities can be estimated by a classifier
fitted to trajectories sampled from the base GFlowNets 𝑝1,… , 𝑝𝑚. Below we specify the sampling scheme and the
objective for this classifier.
Let 𝑄̃𝜙(𝑦1,… , 𝑦𝑛|𝑠) be a classifier with parameters 𝜙 that we wish to train to approximate the ground-truth conditional:
𝑄̃𝜙(𝑦1,… , 𝑦𝑛|𝑠) ≈ 𝑝(𝑦1,… , 𝑦𝑛|𝑠). Note that 𝑄̃𝜙 represents the joint distribution of 𝑦1,… , 𝑦𝑛 given a state 𝑠. Under
the model (13) the variables 𝑦1,… , 𝑦𝑛 are dependent given a state 𝑠 ∈  ⧵  , but, are independent given a terminal
state 𝑥 ∈  . This observation motivates separate treatment of terminal and non-terminal states.
Learning the terminal state classifier. For a terminal state 𝑥, the variables 𝑦1,… , 𝑦𝑛 are independent and identically
distributed. Hence we can use the factorization 𝑄̃𝜙(𝑦1,… , 𝑦𝑛|𝑥) = ∏𝑛

𝑘=1 𝑄̃𝜙(𝑦𝑘|𝑥). Moreover, all distributions on the
r.h.s. must be the same. In other words, for the terminal classifier it is, therefore, enough to learn just 𝑄̃𝜙(𝑦1|𝑥). This
marginal classifier can be learned by minimizing the cross-entropy loss

T(𝜙) = 𝔼
(𝑥,𝑦1)∼𝑝(𝑥,𝑦1)

[
− log 𝑄̃𝜙(𝑦1=𝑦1|𝑥=𝑥)

]
. (21)

Sampling from 𝑝(𝑥, 𝑦1) can be performed according to the factorization 𝑝(𝑦1)𝑝(𝑥|𝑦1). First, 𝑦1 is sampled from 𝑝(𝑦1),which is uniform under our choice of 𝑝(𝑥). Then, 𝑥|(𝑦1=𝑦1) is generated from the base GFlowNet 𝑝𝑦1 . For our choice
of 𝑝(𝑥), we can derive from (13) that 𝑝(𝑥|𝑦=𝑦1) = 𝑝𝑦1 (𝑥).
Learning the non-terminal state classifier. Given a non-terminal state 𝑠 ∈  ⧵ , we need to model 𝑦1,… , 𝑦𝑛 jointly.
In order to train the classifier one needs to sample tuples (𝑠̂, 𝑦1,… , 𝑦𝑛). Non-terminal states 𝑠 can be generated as
intermediate states in trajectories 𝜏 = (𝑠0 → 𝑠1 → … → 𝑥). Given a sampled trajectory 𝜏 and a set of labels 𝑦1,… , 𝑦𝑛we denote the total cross-entropy loss of all non-terminal states in 𝜏 by

𝓁(𝜏, 𝑦1,… , 𝑦𝑛;𝜙) =
|𝜏|−1∑
𝑡=0

[
− log 𝑄̃𝜙(𝑦1=𝑦1,… , 𝑦𝑛=𝑦𝑛|𝑠= 𝑠̂𝑡)

]
. (22)

The pairs (𝜏, 𝑦1) can be generated via a sampling scheme similar to the one used for the terminal state classifier loss
above: 1) 𝑦1 ∼ 𝑝(𝑦1) and 2) 𝜏 ∼ 𝑝𝑦1 (𝜏). Sampling 𝑦2,… , 𝑦𝑛 given 𝜏 (and 𝑥, the terminal state of 𝜏) requires access to
the values 𝑝(𝑦𝑘=𝑦𝑘|𝑥), but these are not directly available. However, if the terminal classifier is learned as described
above, the estimates 𝑤𝑖(𝑥;𝜙) = 𝑄̃𝜙(𝑦1= 𝑖|𝑥=𝑥) can be used instead.
We described a training scheme where the loss and the sampling procedure for the non-terminal state classifier rely
on the estimates produced by the terminal state classifier. In principle, one could use a two-phase procedure by first
learning the terminal state classifier, and then learning the non-terminal state classifier using the estimates provided by
the fixed terminal state classifier. However, it is possible to train both classifiers in one run, provided that we address
potential training instabilities due to the feedback loop between the non-terminal and terminal classifiers. We employ the
“target network” technique developed in the context of deep Q-learning [55]. We introduce a “target network” parameter
vector 𝜙 which is used to produce the estimates 𝑤𝑖(𝑥;𝜙) for the non-terminal state loss. We update 𝜙 as the exponential
moving average of the recent iterates of 𝜙.

9

Compositional Sculpting of Iterative Generative Processes

After putting all components together the training loss for the non-terminal state classifier is

𝑁 (𝜙, 𝜙) = 𝔼
(𝜏,𝑦1)∼𝑝(𝜏,𝑦1)

⎡⎢⎢⎣

𝑚∑
𝑦2=1

⋯
𝑚∑

𝑦𝑛=1

(𝑛∏
𝑘=2

𝑤𝑦𝑘 (𝑥;𝜙)

)
𝓁(𝜏, 𝑦1,… , 𝑦𝑛;𝜙)

⎤⎥⎥⎦
. (23)

We refer the reader to Appendix C.4 for a more detailed derivation of the loss (23).
Note that equation (23) involves summation over 𝑦2,… 𝑦𝑛 with 𝑚𝑛−1 terms in the sum. If values of 𝑛 and 𝑚 are small,
the sum can be evaluated directly. In general, one could trade off estimation accuracy for improved speed by replacing
the summation with Monte Carlo estimation. In this case, the values 𝑦𝑘 are sampled from the categorical distributions
𝑄𝜙(𝑦|𝑥). Note that labels can be sampled in parallel since 𝑦𝑖 are independent given 𝑥.
Algorithm 1 shows the complete classifier training procedure.
Algorithm 1 Compositional Sculpting: classifier training

1: Initialize 𝜙 and set 𝜙 = 𝜙
2: for step = 1,… , num_steps do
3: for 𝑖 = 1,… , 𝑚 do
4: Sample 𝜏𝑖 ∼ 𝑝𝑖(𝜏)5: end for

6: 𝑇 (𝜙) = −
𝑚∑
𝑖=1

log 𝑄̃𝜙(𝑦1= 𝑖|𝑥=𝑥𝑖) {Terminal state loss (21)}
7: 𝑤𝑖(𝑥𝑗 ;𝜙)=𝑄̃𝜙 (𝑦𝑘= 𝑖|𝑥=𝑥𝑗), 𝑖, 𝑗 ∈ {1,…𝑚} {Probability estimates}

8: 𝑁 (𝜙, 𝜙) =
𝑚∑

𝑦1=1
…

𝑚∑
𝑦𝑛=1

(𝑛∏
𝑘=2

𝑤𝑦𝑘 (𝑥𝑦1 ;𝜙)

)
𝓁(𝜏𝑦1 , 𝑦1,… 𝑦𝑛;𝜙) {Non-terminal state loss (22)-(23)}

9: (𝜙, 𝜙) = 𝑇 (𝜙) + 𝛾(step) ⋅ 𝑁 (𝜙, 𝜙)
10: Update 𝜙 using ∇𝜙(𝜙, 𝜙); update 𝜙 = 𝛽𝜙 + (1 − 𝛽)𝜙
11: end for

5.3 Composition of Diffusion Models

In this section, we show how the method introduced above can be applied to diffusion models. First, we adapt the model
we introduced in (13)-(16) to diffusion models. A diffusion model trained to sample from 𝑝𝑖(𝑥) generates a trajectory
𝜏 = {𝑥𝑡}𝑇𝑡=0 over a range of time steps which starts with a randomly sampled state 𝑥𝑇 and ends in 𝑥0, where 𝑥0 has
distribution 𝑝𝑖,𝑡=0(𝑥) = 𝑝𝑖(𝑥). Thus, we must adapt our model to reflect this. We introduce a set of mutually dependent
variables 𝑥𝑡 for 𝑡 ∈ (0, 𝑇] with as conditional distribution the transition kernel of the diffusion model 𝑝𝑖(𝑥𝑡|𝑥0).
Given 𝑚 base diffusion models that sample from 𝑝1,… , 𝑝𝑚 respectively, we define the prior 𝑝(𝑥) as a mixture of these
diffusion models. Proposition 5.4 shows that this mixture is a diffusion model that can be constructed directly from the
base diffusion models. We then apply classifier guidance to this mixture to sample from the composition. We present an
informal version of the proposition below. The required assumptions and the proof are provided in Appendix C.5.
Proposition 5.4 (Diffusion mixture SDE). Suppose distributions 𝑝1(𝑥),… , 𝑝𝑚(𝑥) are realized by diffusion models with
forward SDEs 𝑑𝑥𝑖,𝑡 = 𝑓𝑖,𝑡(𝑥𝑖,𝑡) 𝑑𝑡 + 𝑔𝑖,𝑡 𝑑𝑤𝑖,𝑡 and score functions 𝑠𝑖,𝑡(⋅), respectively. Then, the mixture distribution
𝑝M(𝑥) =

∑𝑚
𝑖=1 𝜔𝑖𝑝𝑖(𝑥) with 𝜔1…𝜔𝑚 ≥ 0 and

∑𝑚
𝑖=1 𝜔𝑖 = 1 is realized by a diffusion model with forward SDE

𝑑𝑥𝑡 =

[𝑚∑
𝑖=1

𝑝(𝑦= 𝑖|𝑥𝑡)𝑓𝑖,𝑡(𝑥𝑡)
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑓𝑀,𝑡(𝑥𝑡)

𝑑𝑡 +

√√√√ 𝑚∑
𝑖=1

𝑝(𝑦= 𝑖|𝑥𝑡)𝑔2𝑖,𝑡
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑔𝑀,𝑡(𝑥𝑡)

𝑑𝑤𝑡, (24)

and backward SDE

𝑑𝑥𝑡 =

[𝑚∑
𝑖=1

𝑝(𝑦= 𝑖|𝑥𝑡)
(
𝑓𝑖,𝑡(𝑥𝑡) − 𝑔2𝑖,𝑡𝑠𝑖,𝑡(𝑥𝑡)

)]
𝑑𝑡 +

√√√√ 𝑚∑
𝑖=1

𝑝(𝑦= 𝑖|𝑥𝑡)𝑔2𝑖,𝑡 𝑑𝑤𝑡, (25)

10

Compositional Sculpting of Iterative Generative Processes

with

𝑝(𝑦= 𝑖|𝑥𝑡) =
𝜔𝑖𝑝𝑖,𝑡(𝑥𝑡)∑𝑚
𝑗=1 𝜔𝑗𝑝𝑗,𝑡(𝑥𝑡)

. (26)

If the base diffusion models have a common forward SDE 𝑑𝑥𝑖,𝑡 = 𝑓𝑡(𝑥𝑖,𝑡) 𝑑𝑡 + 𝑔𝑡 𝑑𝑤𝑖,𝑡, equations (24)-(25) simplify to

𝑑𝑥𝑡 = 𝑓𝑡(𝑥𝑡)𝑑𝑡 + 𝑔𝑡𝑑𝑤𝑡, 𝑑𝑥𝑡 =

[
𝑓𝑡(𝑥𝑡) − 𝑔2𝑡

(𝑚∑
𝑖=1

𝑝(𝑦= 𝑖|𝑥𝑡)𝑠𝑖,𝑡(𝑥𝑡)
)]

𝑑𝑡 + 𝑔𝑡𝑑𝑤𝑡. (27)

Theorem 5.5 summarizes the overall approach.
Theorem 5.5. Suppose distributions 𝑝1(𝑥),… , 𝑝𝑚(𝑥) are realized by diffusion models with forward SDEs 𝑑𝑥𝑖,𝑡 =
𝑓𝑖,𝑡(𝑥𝑖,𝑡) 𝑑𝑡 + 𝑔𝑖,𝑡 𝑑𝑤𝑖,𝑡 and score functions 𝑠𝑖,𝑡(⋅), respectively. Let 𝑦1,… 𝑦𝑛 be random variables defined by (13). Then,
the conditional 𝑝(𝑥|𝑦1,… , 𝑦𝑛) is realized by a classifier-guided diffusion with backward SDE

𝑑𝑥𝑡 =

[𝑚∑
𝑖=1

𝑝(𝑦= 𝑖|𝑥𝑡)
(
𝑓𝑖,𝑡(𝑥𝑡) − 𝑔2𝑖,𝑡

(
𝑠𝑖,𝑡(𝑥𝑡) + ∇𝑥𝑡 log 𝑝(𝑦1,… , 𝑦𝑛|𝑥𝑡)

))]
𝑑𝑡 +

√√√√ 𝑚∑
𝑖=1

𝑝(𝑦= 𝑖|𝑥𝑡)𝑔2𝑖,𝑡 𝑑𝑤𝑡. (28)

The proof of Theorem 5.5 is provided in Appendix C.6.

5.4 Classifier Training (Diffusion Models)

We approximate the inferential distributions in equations (27) and (28) with a time-conditioned classifier
𝑄̃𝜙(𝑦1,… , 𝑦𝑛|𝑥𝑡) with parameters 𝜙. Contrary to GFlowNets, which employed a terminal and non-terminal state
classifier, here we only need a single time-dependent classifier. The classifier is trained with different objectives
on terminal and non-terminal states. The variables 𝑦1,… , 𝑦𝑛 are dependent given a state 𝑥𝑡 for 𝑡 ∈ [0, 𝑇), but are
independent given the terminal state 𝑥𝑇 . Thus, when training on terminal states we can exploit this independence.
Furthermore, we generally found it beneficial to initially train only on terminal states. The loss for the non-terminal
states depends on classifications of the terminal state of the associated trajectories, thus by minimizing the classification
error of terminal states first, we reduce noise in the loss calculated for the non-terminal states later.
For a terminal state 𝑥0, the classifier 𝑄̃𝜙(𝑦1,… , 𝑦𝑛|𝑥𝑡) can be factorized as ∏𝑛

𝑘=1 𝑄̃𝜙(𝑦𝑘|𝑥0). Hence we can train 𝑄̃ by
minimizing the cross-entropy loss

T(𝜙) = 𝔼
(𝑥0,𝑦1)∼𝑝(𝑥,𝑦1)

[
− log 𝑄̃𝜙(𝑦1=𝑦1|𝑥0=𝑥0)

]
. (29)

Samples 𝑝(𝑥0, 𝑦1) can be generated according to the factorization 𝑝(𝑦1)𝑝(𝑥0|𝑦1). First, 𝑦1 is sampled from 𝑝(𝑦1), which is
uniform under our choice of 𝑝(𝑥0). Then, 𝑥0|(𝑦1=𝑦1) is generated from the reverse SDE of base diffusion model 𝑝𝑦1 (𝑥).
Note that equation (14) implies that all observations have the same conditional distribution given 𝑥. Thus, 𝑄̃𝜙(𝑦1|𝑥0) is
also a classifier for observations 𝑦2,… , 𝑦𝑛.
For a non-terminal state 𝑥𝑡 with 𝑡 ∈ (0, 𝑇], we must train 𝑄̃ to predict 𝑦1,… , 𝑦𝑛 jointly. For a non-terminal state 𝑥𝑡 and
observations 𝑦1,… , 𝑦𝑛, the cross-entropy loss is

𝓁(𝑥𝑡, 𝑦1,… , 𝑦𝑛;𝜙) = − log 𝑄̃𝜙(𝑦1=𝑦1,… , 𝑦𝑛=𝑦𝑛|𝑥𝑡=𝑥𝑡). (30)
Tuples (𝑥𝑡, 𝑦1,… , 𝑦𝑛) are obtained as follows: 1) 𝑦1 ∼ 𝑝(𝑦1); 2) A trajectory 𝜏 = {𝑥𝑡}𝑇𝑡=0 is sampled from the reverse
SDE of diffusion model 𝑦1. At this point, we would ideally sample 𝑦2,… , 𝑦𝑛 given 𝑥0 but this requires access to
𝑝(𝑦𝑘 = 𝑦𝑘|𝑥0). Instead, we approximate this with 𝑤𝑖(𝑥;𝜙) = 𝑄̃𝜙(𝑦1 = 𝑖|𝑥0 = 𝑥0) and marginalize over 𝑦2,… , 𝑦𝑛 to
obtain the cross-entropy loss

𝑁 (𝜙, 𝜙) = 𝔼
(𝜏,𝑦1)∼𝑝(𝜏,𝑦1)

⎡⎢⎢⎣
∑

𝑥𝑡∈𝜏⧵{𝑥0}

𝑚∑
𝑦2=1

⋯
𝑚∑

𝑦𝑛=1

(𝑛∏
𝑘=2

𝑤𝑦𝑘 (𝑥0;𝜙)

)
𝓁(𝑥𝑡, 𝑦1,… , 𝑦𝑛;𝜙)

⎤⎥⎥⎦
. (31)

11

Compositional Sculpting of Iterative Generative Processes

𝑝1 𝑝2 𝑝1 ⊗ 𝑝2 𝑝1 ◑ 𝑝2 𝑝1 ◑ 0.95 𝑝2

H
ig
h

Lo
w

𝑝1 𝑝2 𝑝3 𝑝
(
𝑥|||

𝑦1=1
𝑦2=2

)
𝑝
(
𝑥
||||
𝑦1=1
𝑦2=2
𝑦3=3

)
𝑝
(
𝑥|||

𝑦1=2
𝑦2=2

)
𝑝
(
𝑥
||||
𝑦1=2
𝑦2=2
𝑦3=2

)

Figure 3: Composed GFlowNets on 32 × 32 grid domain. Color indicates cell probability, darker is higher. (Top)
operations on two distributions. (Bottom) operations on three distributions. The red circles indicate the high probability
regions of 𝑝1, 𝑝2, 𝑝3.

(a) Base at 𝛽 = 32 (b) Harmonic mean (c) Contrasts (d) Base at 𝛽 = 96 (e) Harmonic mean
Figure 4: Reward distributions in the molecular generation domain. (a) Base GFlowNets at 𝛽=32: 𝑝SEH and 𝑝SAare trained with 𝑅SEH(𝑥)32 and 𝑅SA(𝑥)32. (b) harmonic mean of 𝑝SEH and 𝑝SA, (c) contrasts. (d) base GFlowNets at
𝛽=96. (e) harmonic mean. The contours indicate the level sets of the kernel density estimates in the (𝑅SEH, 𝑅SA) plane.

6 Experiments

6.1 2D Distributions via GFlowNet

We validate GFlowNet compositions obtained with our framework on 2D grid domain [36]. The goal of this experiment
is to validate our approach in a controlled setting, where the ground-truth composite distributions can be evaluated
directly.
In the 2D grid domain, the states are the cells of an 𝐻 ×𝐻 grid. The starting state is the upper-left cell 𝑠0 = (0, 0).
At each state, the allowed actions are: 1) move right; 2) move down; 3) a stop action that indicates termination of the
trajectory at the current position. For this experiment, we first trained GFlowNets 𝑝𝑖(𝑥) ∝ 𝑅𝑖(𝑥) with reward functions
𝑅𝑖(𝑥) > 0 defined on the grid, and then trained classifiers and constructed GFlowNet compositions following 5.3.
Figure 3 (top row) shows the distributions obtained by composing two pre-trained GFlowNets (top row; left). The
harmonic mean 𝑝1⊗𝑝2, covers the regions that have high probability under both 𝑝1 and 𝑝2 and excludes locations where
either of the distributions is low. 𝑝1◑ 𝑝2 resembles 𝑝1 but the relative masses of the modes of 𝑝1 are modulated by
𝑝2: regions with high 𝑝2 have lower probability under contrast. The parameterized contrast 𝑝1◑ 0.95 𝑝2 with 𝛼 = 0.05
magnifies the contrasting effect: high 𝑝2(𝑥) implies very low (𝑝1◑ 0.95 𝑝2)(𝑥).
The bottom row of Figure 3 shows the operations on 3 distributions. The conditional 𝑝(𝑥|𝑦1=1, 𝑦2=2) is concentrated
on the points that have high likelihood under both 𝑝1 and 𝑝2. Similarly, the value 𝑝(𝑥|𝑦1 = 1, 𝑦2 = 2, 𝑦3 = 3) is high
if 𝑥 is likely to be observed under all three distributions at the same time. The conditionals 𝑝(𝑥|𝑦1 = 2, 𝑦2 = 2) and
𝑝(𝑥|𝑦1=2, 𝑦2=2, 𝑦3=2) highlight the points with high 𝑝2(𝑥) but low 𝑝1(𝑥) and 𝑝(𝑥). Conditioning on three labels results
in a sharper distribution compared to double-conditioning. Note that the operations can be thought of as generalized

12

Compositional Sculpting of Iterative Generative Processes

Table 1: Reward distributions of composite GFlowNets.
SEH low high

SA low high low high
QED low high low high low high low high

𝑝SEH 0 0 0 0 𝟔𝟐 𝟗 𝟐𝟒 𝟓
𝑝SA 0 0 𝟕𝟑 𝟒 0 0 𝟏𝟖 𝟓
𝑝QED 0 𝟒𝟎 0 𝟐𝟔 0 𝟐𝟏 0 𝟏𝟑
(a) 𝑦={SEH, SA} 1 0 16 2 6 3 𝟓𝟒 𝟏𝟖
(b) 𝑦={SEH, QED} 0 11 0 4 1 𝟒𝟖 4 𝟑𝟐
(c) 𝑦={SA, QED} 0 15 1 𝟒𝟐 0 8 2 𝟑𝟐
(d) 𝑦={SEH, SA, QED} 0 7 2 11 2 19 10 𝟒𝟗
(e) 𝑦={SEH, SEH, SEH} 0 0 0 0 𝟔𝟑 9 24 4
(f) 𝑦={SA, SA, SA} 0 0 𝟕𝟒 5 0 0 17 4
(g) 𝑦={QED, QED, QED} 0 𝟒𝟎 0 23 0 23 0 14

In each row, the numbers show the percentage of the samples from the
respective model that fall into one of 8 bins according to rewards. The
“low” and “high” categories are decided by thresholding SEH: 0.5, SA:
0.6, QED: 0.25.

−0.5 0.0 0.5 1.0
−0.5

0.0

0.5

1.0

pSEH

pSA

pQED

(a)

(b)

(c)
(d)

(e)

(f)

(g)

Figure 5: 2D t-SNE embeddings of
three base GFlowNets trained with
𝑅SEH(𝑥)𝛽 , 𝑅SA(𝑥)𝛽 , 𝑅QED(𝑥)𝛽 , at 𝛽 =
32 and their compositions. The t-SNE
embeddings are computed based on pair-
wise earth mover’s distances between
the distributions. Labels (a)-(g) match
rows in Table 1.

set-theoretic operations (set intersection and set difference). We provide quantitative results and further details in
Appendix E.1. The classifier learning curves are provided in Appendix F.4.

6.2 Molecule Generation via GFlowNet

Next, we evaluate our method for GFlowNet composition on a large and highly structured data space, and asses the
effect that composition operations have on resulting data distributions in a practical setting. To that end, we conducted
experiments with GFlowNets trained for the molecular generation task proposed by Bengio et al. [36].
Domain. In the molecule generation task, the objects 𝑥 ∈  are molecular graphs. The non-terminal states 𝑠 ∈  ⧵
are incomplete molecular graphs. The transitions from a given non-terminal state 𝑠 are of two types: 1) fragment
addition 𝑠 → 𝑠′: new molecular graph 𝑠′ is obtained by attaching a new fragment to the molecular graph 𝑠; 2) stop
action 𝑠 → 𝑥: if 𝑠 ≠ 𝑠0, then the generation process can be terminated at the molecular graph corresponding to the
current state (note that new terminal state 𝑥 ∈  is different from 𝑠 ∈  ⧵  , but both states correspond to the same
molecular graph).
Rewards. We trained GFlowNets using 3 reward functions: SEH, a reward computed by an MPNN [56] that was
trained by Bengio et al. [36] to estimate the binding energy of a molecule to the soluble epoxide hydrolase protein; SA,
an estimate of synthetic accessibility [57] computed with tools from RDKit library [58]; QED, a quantitative estimate of
drug-likeness [59] which is also computed with RDKit. We normalized all reward functions to the range [0, 1]. Higher
values of SEH, SA, and QED correspond to stronger binding, higher synthetic accessibility, and higher drug-likeness
respectively. Following Bengio et al. [36], we introduced the parameter 𝛽 which controls the sharpness (temperature) of
the target distribution: 𝑝(𝑥) ∝ 𝑅(𝑥)𝛽 , increasing 𝛽 results in a distribution skewed towards high-reward objects. We
experimented with two 𝛽 values, 32 and 96 (Figure 4(a),4(d)).
Training and evaluation. After training the base GFlowNets with the reward functions described above, we trained
classifiers with Algorithm 1. The classifier was parameterized as a graph neural network based on a graph transformer
architecture [60]. Further details of the classifier parameterization and training are provided in Appendix E.2. Compared
to the 2D grid domain (Section 6.1), we can not directly evaluate the distributions obtained by our approach. Instead,
we analyzed the samples generated by the composed distributions. We sampled 5 000 molecules from each composed
distribution obtained with our approach as well as the base GFlowNets. We evaluated the sample collections with the
two following strategies. Reward evaluation: we analyzed the distributions of rewards across the sample collections.
The goal is to see whether the composition of GFlowNets trained for different rewards leads to noticeable changes
in reward distribution. Distribution distance evaluation: we used the samples to estimate the pairwise distances
between the distributions. Specifically, for a given pair of distributions represented by two collections of samples
𝐴 = {𝑥𝐴,𝑖}𝑛𝑖=1, 𝐵 = {𝑥𝐵,𝑖}𝑛𝑖=1 we computed the earth mover’s distance 𝑑(𝐴,𝐵) with ground molecule distance
given by 𝑑(𝑥, 𝑥′) = (max{𝑠(𝑥, 𝑥′), 10−3})−1 − 1, where 𝑠(𝑥, 𝑥′) ∈ [0, 1] is the Tanimoto similarity over Morgan
fingerprints of molecules 𝑥 and 𝑥′.

13

Compositional Sculpting of Iterative Generative Processes

𝑝1 𝑝2 𝑝3 𝑝
(
𝑥|||

𝑦1=1
𝑦2=1

)
𝑝
(
𝑥|||

𝑦1=2
𝑦2=2

)
𝑝
(
𝑥|||

𝑦1=3
𝑦2=3

)

𝑝
(
𝑥|||

𝑦1=1
𝑦2=2

)
𝑝
(
𝑥|||

𝑦1=1
𝑦2=3

)
𝑝
(
𝑥|||

𝑦1=2
𝑦2=3

)
𝑝
(
𝑥
||||
𝑦1=1
𝑦2=2
𝑦3=3

)
𝑝
(
𝑥
||||
𝑦1=1
𝑦2=2
𝑦3=1

)
𝑝
(
𝑥
||||
𝑦1=1
𝑦2=2
𝑦3=2

)

Figure 6: Composed diffusion models on colored MNIST. Samples from 3 pre-trained diffusion models and their
various compositions.

Results. Figure 4 shows reward distributions of base GFlowNets (trained with SEH and SA rewards at 𝛽 ∈ {32, 96})
and their compositions. Base GFlowNet distributions are concentrated on examples that score high in their respective
rewards. For each model, there is considerable variation in the reward that was not used for training. The harmonic
mean operation (Figures 4(b), 4(e)) results in distributions that are concentrated on the samples scoring high in both
rewards. The contrast operation (Figure 4(c)) has the opposite effect: the distributions are skewed towards the examples
scoring high in only one of the original rewards. Note that the tails of the contrast distributions are retreating from the
area covered by the harmonic mean.
We show reward distribution statistics of three GFlowNets (trained with SEH, SA, and QED at 𝛽 = 32) and their
compositions in Table 1. Each row of the table gives a breakdown (percentages) of the samples from a given model into
one of 23 = 8 bins according to rewards. For all three base models, the majority of the samples fall into the “high” category
according to the respective reward, while the rewards that were not used for training show variation. Conditioning on
two different labels (e.g. 𝑦={SEH,QED}) results in concentration on examples that score high in two selected rewards,
but not necessarily scoring high in the reward that was not selected. The conditional 𝑦={SEH,QED,SA} shifts the
focus to examples that have all three properties.
Figure 5 shows 2D embeddings of the distributions appearing in Table 1. The embeddings were computed with t-SNE
based on the pairwise earth mover’s distances. The configuration of the embeddings gives insight into the configuration
of base models and conditionals in the distribution space. We see that points corresponding to pairwise conditionals
lie in between the two base models selected for conditioning. Conditional 𝑦= {SEH,SA,QED} appears to be near
the centroid of the triangle (𝑝SEH, 𝑝SA, 𝑝QED) and lies close the the pairwise conditoinals. The distributions obtained
by repeated conditioning on the same label value (e.g. 𝑦={SEH,SEH,SEH}) are spread out to the boundary and lie
closer to the respective base distributions while being relatively far from pairwise conditionals. We provide a complete
summary of the distribution distances in Table F.5. The classifier learning curves are provided in Appendix F.4. The
sample diversity statistics of base GFlowNets at different values of 𝛽 are provided in Appendix F.5.

6.3 Colored MNIST Generation via Diffusion Models

Finally, we empirically test our method for the composition of diffusion models on image generation task.
In this experiment, we composed three diffusion models that are pre-trained to generate colored MNIST digits [61].
Model 𝑝1 was trained to generate cyan digits less than 4, 𝑝2 to generate cyan and beige digits less than 2, and 𝑝3 to
generate cyan and beige even digits less than 4. In essence, each model was trained to generate digits with a specific
property: 𝑝1 generates cyan digits, 𝑝2 generates digits less than 2, and 𝑝3 generates even digits.
We built the composition iteratively by factorizing the posterior as 𝑝(𝑥|𝑦1, 𝑦2, 𝑦3) ∝ 𝑝(𝑥)𝑝(𝑦1, 𝑦2|𝑥)𝑝(𝑦3|𝑥, 𝑦1, 𝑦2). To
this end, we first trained a classifier 𝑄̃(𝑦1, 𝑦2|𝑥𝑡) on trajectories sampled from the base models. This allows us to generate

14

Compositional Sculpting of Iterative Generative Processes

samples from 𝑝(𝑥|𝑦1, 𝑦2). We then trained an additional classifier 𝑄̃(𝑦3|𝑥𝑡, 𝑦1, 𝑦2) on trajectories from compositions
defined by (𝑦1, 𝑦2) to allow us to sample from 𝑝(𝑥|𝑦1, 𝑦2, 𝑦3). Additional details can be found in Appendix E.3.
Figure 6 shows samples from the pre-trained models and from selected compositions. The negating effect of not
conditioning on observations is clearly visible in the compositions using two variables. For example, 𝑝(𝑥|𝑦1=1, 𝑦2=1)
only generates cyan 3 digits. Because there we do not condition on 𝑝2 or 𝑝3, the composition excludes digits that have high
probability under 𝑝2 or 𝑝3, i.e. those that are less than 2 or even. We can make a similar analysis of 𝑝(𝑥|𝑦1=1, 𝑦2=3).
Cyan even digits have high density under both 𝑝1 and 𝑝3, but because 𝑝2 is not conditioned on, the composition excludes
digits less than two (i.e. cyan 0’s). Finally, 𝑝(𝑥|𝑦1=1, 𝑦2=2, 𝑦3=3) generates only cyan 0 digits, on which all base
models have high density.

7 Conclusion

We introduced Compositional Sculpting, a general approach for composing iterative generative models. Compositions
are defined through “observations”, which enable us to emphasize or de-emphasize the density of the composition
in regions where specific base models have high density. We highlighted two binary compositions, harmonic mean
and contrast, which are analogous to the product and negation operations defined on EBMs. A crucial feature of the
compositions we have introduced is that we can sample from them directly. By extending classifier guidance we are able
to leverage the generative capabilities of the base models to produce samples from the composition. Through empirical
experiments, we validated our approach for composing diffusion models and GFlowNets on toy domains, molecular
generation, and image generation.

Acknowledgements

TG and TJ acknowledge support from the Machine Learning for Pharmaceutical Discovery and Synthesis (MLPDS)
consortium, DARPA Accelerated Molecular Discovery program, the NSF Expeditions grant (award 1918839) "Under-
standing the World Through Code", and from the MIT-DSTA collaboration.
SK and SDP were supported by the Technology Industries of Finland Centennial Foundation and the Jane and Aatos
Erkko Foundation under project Interactive Artificial Intelligence for Driving R&D, the Academy of Finland (flagship
programme: Finnish Center for Artificial Intelligence, FCAI; grants 328400, 345604 and 341763), and the UKRI Turing
AI World-Leading Researcher Fellowship, EP/W002973/1.
VG acknowledges support from the Academy of Finland (grant decision 342077) for "Human-steered next-generation
machine learning for reviving drug design", the Saab-WASP initiative (grant 411025), and the Jane and Aatos Erkko
Foundation (grant 7001703) for "Biodesign: Use of artificial intelligence in enzyme design for synthetic biology".
GY acknowledges support from the National Science Foundation under Cooperative Agreement PHY-2019786 (The
NSF AI Institute for Artificial Intelligence and Fundamental Interactions, http://iaifi.org).
We thank Sammie Katt and Pavel Izmailov for the helpful discussions and assistance in making the figures.
We thank NeurIPS 2023 anonymous reviewers for the helpful feedback on our work.

Broader Impact

We proposed a mathematical framework and methods for the composition of pre-trained generative models. While
the primary emphasis of our work is on advancing foundational research on generative modeling methodology and
principled sampling techniques, our work inherits ethical concerns associated with generative models such as creation
of deepfake content and misinformation dissemination, as well as reproduction of biases present in the datasets used for
model training. If not carefully managed, these models can perpetuate societal biases, exacerbating issues of fairness
and equity.
Our work contributes to research on the reuse of pre-trained models. This research direction promotes eco-friendly AI
development, with the long-term goal of reducing energy consumption and carbon emissions associated with large-scale
generative model training.

15

http://iaifi.org

Compositional Sculpting of Iterative Generative Processes

References
[1] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer

Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross B. Girshick. Segment anything. ArXiv,
abs/2304.02643, 2023.

[2] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language
supervision. In International conference on machine learning, pages 8748–8763. PMLR, 2021.

[3] Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade Gordon, Christoph
Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for contrastive language-image learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2818–2829,
2023.

[4] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10684–10695, 2022.

[5] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840–6851, 2020.

[6] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya
Sutskever. Zero-shot text-to-image generation. In International Conference on Machine Learning, pages 8821–
8831. PMLR, 2021.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. ArXiv, abs/1810.04805, 2018.

[8] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. Advances
in neural information processing systems, 33:1877–1901, 2020.

[9] OpenAI. Chatgpt (mar 14 version). Large language model, 2023. URL https://chat.openai.com/chat.
[10] Adam Roberts, Hyung Won Chung, Anselm Levskaya, Gaurav Mishra, James Bradbury, Daniel Andor, Sharan

Narang, Brian Lester, Colin Gaffney, Afroz Mohiuddin, Curtis Hawthorne, Aitor Lewkowycz, Alexandru Salcianu,
Marc van Zee, Jacob Austin, Sebastian Goodman, Livio Baldini Soares, Haitang Hu, Sasha Tsvyashchenko,
Aakanksha Chowdhery, Jasmijn Bastings, Jannis Bulian, Xavier García, Jianmo Ni, Andrew Chen, Kathleen
Kenealy, J. Clark, Stephan Lee, Daniel H Garrette, James Lee-Thorp, Colin Raffel, Noam M. Shazeer, Marvin
Ritter, Maarten Bosma, Alexandre Passos, Jeremy B. Maitin-Shepard, Noah Fiedel, Mark Omernick, Brennan
Saeta, Ryan Sepassi, Alexander Spiridonov, Joshua Newlan, and Andrea Gesmundo. Scaling up models and data
with t5x and seqio. ArXiv, abs/2203.17189, 2022.

[11] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language modeling with
pathways. ArXiv, abs/2204.02311, 2022.

[12] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana
Gopalakrishnan, Karol Hausman, Alexander Herzog, Jasmine Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Tomas
Jackson, Sally Jesmonth, Nikhil J. Joshi, Ryan C. Julian, Dmitry Kalashnikov, Yuheng Kuang, Isabel Leal, Kuang-
Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deeksha Manjunath, Igor Mordatch, Ofir Nachum, Carolina
Parada, Jodilyn Peralta, Emily Perez, Karl Pertsch, Jornell Quiambao, Kanishka Rao, Michael S. Ryoo, Grecia
Salazar, Pannag R. Sanketi, Kevin Sayed, Jaspiar Singh, Sumedh Anand Sontakke, Austin Stone, Clayton Tan,
Huong Tran, Vincent Vanhoucke, Steve Vega, Quan Ho Vuong, F. Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu,
and Brianna Zitkovich. Rt-1: Robotics transformer for real-world control at scale. ArXiv, abs/2212.06817, 2022.

[13] Danny Driess, F. Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan Wahid,
Jonathan Tompson, Quan Ho Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar, Pierre Sermanet, Daniel
Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc Toussaint, Klaus Greff, Andy Zeng, Igor
Mordatch, and Peter R. Florence. Palm-e: An embodied multimodal language model. ArXiv, abs/2303.03378,
2023.

[14] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, Alexander Herzog, Daniel Ho, Jasmine Hsu, Julian
Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey, Sally Jesmonth, Nikhil Jayant
Joshi, Ryan C. Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei Lee, Sergey Levine, Yao Lu, Linda
Luu, Carolina Parada, Peter Pastor, Jornell Quiambao, Kanishka Rao, Jarek Rettinghouse, Diego M Reyes, Pierre

16

https://chat.openai.com/chat

Compositional Sculpting of Iterative Generative Processes

Sermanet, Nicolas Sievers, Clayton Tan, Alexander Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu,
Sichun Xu, Mengyuan Yan, and Andy Zeng. Do as i can, not as i say: Grounding language in robotic affordances.
In Karen Liu, Dana Kulic, and Jeff Ichnowski, editors, Proceedings of The 6th Conference on Robot Learning,
volume 205 of Proceedings of Machine Learning Research, pages 287–318. PMLR, 2023.

[15] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn
Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate protein structure prediction
with alphafold. Nature, 596(7873):583–589, 2021.

[16] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S.
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson, S. Buch, Dallas Card, Rodrigo
Castellon, Niladri S. Chatterji, Annie S. Chen, Kathleen A. Creel, Jared Davis, Dora Demszky, Chris Donahue,
Moussa Doumbouya, Esin Durmus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea
Finn, Trevor Gale, Lauren E. Gillespie, Karan Goel, Noah D. Goodman, Shelby Grossman, Neel Guha, Tatsunori
Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas F. Icard,
Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani, O. Khattab,
Pang Wei Koh, Mark S. Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina Lee,
Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu Ma, Ali Malik, Christopher D.
Manning, Suvir Mirchandani, Eric Mitchell, Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan,
Benjamin Newman, Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, J. F. Nyarko, Giray Ogut, Laurel J.
Orr, Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi Raghunathan,
Robert Reich, Hongyu Ren, Frieda Rong, Yusuf H. Roohani, Camilo Ruiz, Jack Ryan, Christopher R’e, Dorsa
Sadigh, Shiori Sagawa, Keshav Santhanam, Andy Shih, Krishna Parasuram Srinivasan, Alex Tamkin, Rohan
Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu,
Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei A. Zaharia, Michael Zhang, Tianyi Zhang, Xikun
Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang. On the opportunities and risks of foundation
models. ArXiv, abs/2108.07258, 2021.

[17] Lvmin Zhang and Maneesh Agrawala. Adding conditional control to text-to-image diffusion models. ArXiv,
abs/2302.05543, 2023.

[18] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini
Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback.
In Advances in Neural Information Processing Systems, volume 35, pages 27730–27744, 2022.

[19] D’idac Sur’is, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution for reasoning.
ArXiv, abs/2303.08128, 2023.

[20] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Huai hsin Chi, F. Xia, Quoc Le, and Denny
Zhou. Chain of thought prompting elicits reasoning in large language models. Advances in Neural Information
Processing Systems, 35:24824–24837, 2022.

[21] Geoffrey E Hinton. Products of experts. In Ninth International Conference on Artificial Neural Networks, volume 1,
1999.

[22] Ramakrishna Vedantam, Ian Fischer, Jonathan Huang, and Kevin Murphy. Generative models of visually grounded
imagination. In International Conference on Learning Representations, 2018. URL https://openreview.net/
forum?id=HkCsm6lRb.

[23] Yilun Du, Shuang Li, and Igor Mordatch. Compositional visual generation with energy based models. Advances
in Neural Information Processing Systems, 33:6637–6647, 2020.

[24] Yilun Du, Shuang Li, Yash Sharma, Josh Tenenbaum, and Igor Mordatch. Unsupervised learning of compositional
energy concepts. Advances in Neural Information Processing Systems, 34:15608–15620, 2021.

[25] Nan Liu, Shuang Li, Yilun Du, Josh Tenenbaum, and Antonio Torralba. Learning to compose visual relations.
Advances in Neural Information Processing Systems, 34:23166–23178, 2021.

[26] Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B Tenenbaum. Compositional visual generation
with composable diffusion models. In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel,
October 23–27, 2022, Proceedings, Part XVII, pages 423–439. Springer, 2022.

[27] Yilun Du, Conor Durkan, Robin Strudel, Joshua B Tenenbaum, Sander Dieleman, Rob Fergus, Jascha Sohl-
Dickstein, Arnaud Doucet, and Will Sussman Grathwohl. Reduce, reuse, recycle: Compositional generation with
energy-based diffusion models and mcmc. In International Conference on Machine Learning, pages 8489–8510.
PMLR, 2023.

[28] Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. Neural computation, 14
(8):1771–1800, 2002.

17

https://openreview.net/forum?id=HkCsm6lRb
https://openreview.net/forum?id=HkCsm6lRb

Compositional Sculpting of Iterative Generative Processes

[29] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Multi-objective molecule generation using interpretable
substructures. In International conference on machine learning, pages 4849–4859. PMLR, 2020.

[30] Yutong Xie, Chence Shi, Hao Zhou, Yuwei Yang, Weinan Zhang, Yong Yu, and Lei Li. {MARS}: Markov
molecular sampling for multi-objective drug discovery. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=kHSu4ebxFXY.

[31] Moksh Jain, Sharath Chandra Raparthy, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Yoshua Bengio, Santiago
Miret, and Emmanuel Bengio. Multi-objective GFlownets. In International Conference on Machine Learning,
pages 14631–14653. PMLR, 2023.

[32] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In International Conference on Machine Learning, pages 2256–2265. PMLR,
2015.

[33] Yang Song and Stefano Ermon. Improved techniques for training score-based generative models. Advances in
neural information processing systems, 33:12438–12448, 2020.

[34] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-
based generative modeling through stochastic differential equations. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=PxTIG12RRHS.

[35] Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J. Hu, Mo Tiwari, and Emmanuel Bengio. Gflownet
foundations. Journal of Machine Learning Research, 24(210):1–55, 2023. URL http://jmlr.org/papers/
v24/22-0364.html.

[36] Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow network based
generative models for non-iterative diverse candidate generation. Advances in Neural Information Processing
Systems, 34:27381–27394, 2021.

[37] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. Advances in
neural information processing systems, 32, 2019.

[38] Brian D.O. Anderson. Reverse-time diffusion equation models. Stochastic Processes and their Applications, 12
(3):313–326, 1982.

[39] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances in Neural
Information Processing Systems, 34:8780–8794, 2021.

[40] Quan Hoang, Tu Dinh Nguyen, Trung Le, and Dinh Phung. Mgan: Training generative adversarial nets with
multiple generators. In International conference on learning representations, 2018.

[41] Ilya O Tolstikhin, Sylvain Gelly, Olivier Bousquet, Carl-Johann Simon-Gabriel, and Bernhard Schölkopf. Adagan:
Boosting generative models. Advances in neural information processing systems, 30, 2017.

[42] Aditya Grover and Stefano Ermon. Boosted generative models. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

[43] Nan Liu, Yilun Du, Shuang Li, Joshua B Tenenbaum, and Antonio Torralba. Unsupervised compositional concepts
discovery with text-to-image generative models. ArXiv, abs/2306.05357, 2023.

[44] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,
Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic text-to-image diffusion models
with deep language understanding. Advances in Neural Information Processing Systems, 35:36479–36494, 2022.

[45] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop on Deep Generative
Models and Downstream Applications, 2021. URL https://openreview.net/forum?id=qw8AKxfYbI.

[46] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon. SDEdit:
Guided image synthesis and editing with stochastic differential equations. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=aBsCjcPu_tE.

[47] Guillaume Couairon, Jakob Verbeek, Holger Schwenk, and Matthieu Cord. Diffedit: Diffusion-based semantic
image editing with mask guidance. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=3lge0p5o-M-.

[48] Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed: How do neural
networks generalise? Journal of Artificial Intelligence Research, 67:757–795, 2020.

[49] Colin Conwell and Tomer Ullman. Testing relational understanding in text-guided image generation. ArXiv,
abs/2208.00005, 2022.

18

https://openreview.net/forum?id=kHSu4ebxFXY
https://openreview.net/forum?id=PxTIG12RRHS
http://jmlr.org/papers/v24/22-0364.html
http://jmlr.org/papers/v24/22-0364.html
https://openreview.net/forum?id=qw8AKxfYbI
https://openreview.net/forum?id=aBsCjcPu_tE
https://openreview.net/forum?id=3lge0p5o-M-

Compositional Sculpting of Iterative Generative Processes

[50] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional image
generation with clip latents. ArXiv, abs/2204.06125, 2022.

[51] Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex Hernández-Garcıa,
Léna Néhale Ezzine, Yoshua Bengio, and Nikolay Malkin. A theory of continuous generative flow networks. In
International Conference on Machine Learning, pages 18269–18300. PMLR, 2023.

[52] Dinghuai Zhang, Ricky TQ Chen, Nikolay Malkin, and Yoshua Bengio. Unifying generative models with gflownets.
ArXiv, abs/2209.02606, 2022.

[53] Stefano Peluchetti. Non-denoising forward-time diffusions, 2022. URL https://openreview.net/forum?
id=oVfIKuhqfC.

[54] Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow matching for
generative modeling. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=PqvMRDCJT9t.

[55] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves,
Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep reinforcement
learning. nature, 518(7540):529–533, 2015.

[56] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message passing
for quantum chemistry. In International conference on machine learning, pages 1263–1272. PMLR, 2017.

[57] Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like molecules based on
molecular complexity and fragment contributions. Journal of cheminformatics, 1:1–11, 2009.

[58] Greg Landrum. Rdkit: Open-source cheminformatics, 2010. URL https://www.rdkit.org/.
[59] G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L Hopkins. Quantifying the

chemical beauty of drugs. Nature chemistry, 4(2):90–98, 2012.
[60] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer networks.

Advances in neural information processing systems, 32, 2019.
[61] Yann LeCun. The mnist database of handwritten digits. http://yann.lecun.com/exdb/mnist/, 1998.
[62] Damiano Brigo. The general mixture-diffusion sde and its relationship with an uncertain-volatility option model

with volatility-asset decorrelation. ArXiv, abs/0812.4052, 2008.
[63] Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance: Improved

credit assignment in GFlownets. In Advances in Neural Information Processing Systems, volume 35, pages
5955–5967, 2022.

[64] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ArXiv, abs/1412.6980, 2014.
[65] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image seg-

mentation. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015: 18th International
Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pages 234–241. Springer, 2015.

[66] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi
Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn high frequency functions in low
dimensional domains. Advances in Neural Information Processing Systems, 33:7537–7547, 2020.

[67] Matthew D Zeiler. Adadelta: an adaptive learning rate method. ArXiv, abs/1212.5701, 2012.
[68] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,

Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep learning
library. Advances in neural information processing systems, 32, 2019.

19

https://openreview.net/forum?id=oVfIKuhqfC
https://openreview.net/forum?id=oVfIKuhqfC
https://openreview.net/forum?id=PqvMRDCJT9t
https://www.rdkit.org/

Compositional Sculpting of Iterative Generative Processes

A Classifier Guidance for Parameterized Operations

This section covers the details of classifier guidance and classifier training for the parameterized operations (Section 4.1).
While in the probabilistic model (6) all observations 𝑦𝑖 are exchangeable, in the parameterized model (10) 𝑦1 and 𝑦2 are
not symmetric. This difference requires changes in the classifier training algorithm for the parameterized operations.
We develop the method for the parameterized operations based on two observations:

• 𝑦1 appears in (10) in the same way as in (13)-(15);
• the likelihood 𝑝(𝑦2|𝑥; 𝛼) of 𝑦2 given 𝑥 can be expressed as the function of 𝑝(𝑦1|𝑥) and 𝛼:

𝑝(𝑦2=1|𝑥; 𝛼) = 𝛼𝑝1(𝑥)
𝛼𝑝1(𝑥) + (1 − 𝛼)𝑝2(𝑥)

=
𝛼 𝑝1(𝑥)
𝑝1(𝑥)+𝑝2(𝑥)

𝛼 𝑝1(𝑥)
𝑝1(𝑥)+𝑝2(𝑥)

+ (1 − 𝛼) 𝑝2(𝑥)
𝑝1(𝑥)+𝑝2(𝑥)

=
𝛼𝑝(𝑦1=1|𝑥)

𝛼𝑝(𝑦1=1|𝑥) + (1 − 𝛼)𝑝(𝑦1=2|𝑥) ,
(32a)

𝑝(𝑦2=2|𝑥; 𝛼) = (1 − 𝛼)𝑝2(𝑥)
𝛼𝑝1(𝑥) + (1 − 𝛼)𝑝2(𝑥)

=
(1 − 𝛼) 𝑝2(𝑥)

𝑝1(𝑥)+𝑝2(𝑥)

𝛼 𝑝1(𝑥)
𝑝1(𝑥)+𝑝2(𝑥)

+ (1 − 𝛼) 𝑝2(𝑥)
𝑝1(𝑥)+𝑝2(𝑥)

=
(1 − 𝛼)𝑝(𝑦1=2|𝑥)

𝛼𝑝(𝑦1=1|𝑥) + (1 − 𝛼)𝑝(𝑦1=2|𝑥) .
(32b)

These two observations combined suggest the training procedure where 1) the terminal state classifier is trained to
approximate 𝑝(𝑦1= 𝑖|𝑥) in the same way as in Section 5.2; 2) the probability estimates 𝑤𝑖(𝑥, 𝛼;𝜙) ≈ 𝑝(𝑦2= 𝑖; 𝛼) are
expressed through the learned terminal state classifier 𝑝(𝑦1= 𝑖|𝑥) via (32). Below we provide details of this procedure
for the case of GFlowNet composition.
Learning the terminal state classifier. The marginal 𝑦1 classifier 𝑄̃𝜙(𝑦1|𝑥) is learned by minimizing the cross-entropy
loss

𝑇 (𝜙) = 𝔼
(𝑥,𝑦1)∼𝑝(𝑥,𝑦1)

[
− log 𝑄̃𝜙(𝑦1=𝑦1|𝑥 = 𝑥)

]
. (33)

Then, the joint classifier 𝑄̃𝜙(𝑦1, 𝑦2|𝑥; 𝛼) is constructed as
𝑄̃𝜙(𝑦1, 𝑦2|𝑥; 𝛼) = 𝑄̃𝜙(𝑦1|𝑥)𝑄̃𝜙(𝑦2|𝑥; 𝛼), (34)

where 𝑄̃𝜙(𝑦2|𝑥; 𝛼) can be expressed through the marginal 𝑄̃𝜙(𝑦1|𝑥) via (32).
Learning the non-terminal state classifier. The non-terminal state classifier 𝑄̃(𝑦1, 𝑦2|𝑠; 𝛼) models 𝑦1 and 𝑦2 jointly.
Note that 𝛼 is one of the inputs to the classifier model. Given a sampled trajectory 𝜏, labels 𝑦1, 𝑦2, and 𝛼, the total
cross-entropy loss of all non-terminal states in 𝜏 is

𝓁(𝜏, 𝑦1, 𝑦2, 𝛼;𝜙) =
|𝜏|−1∑
𝑡=0

[
− log 𝑄̃𝜙(𝑦1=𝑦1, 𝑦2=𝑦2|𝑠= 𝑠̂𝑡; 𝛼)

]
. (35)

The pairs (𝜏, 𝑦1) can be generated via a sampling scheme similar to the one used for the terminal state classifier loss
above: 1) 𝑦1 ∼ 𝑝(𝑦1) and 2) 𝜏 ∼ 𝑝𝑦1 (𝜏). An approximation of the distribution of 𝑦2 given 𝜏 is constructed using (32):

𝑤1(𝑥, 𝛼;𝜙) =
𝛼𝑄̃𝜙(𝑦1=1|𝑥=𝑥)

𝛼𝑄̃𝜙(𝑦1=1|𝑥=𝑥) + (1 − 𝛼)𝑄̃𝜙(𝑦1=2|𝑥=𝑥)
≈ 𝑝(𝑦2=1|𝑥 = 𝑥; 𝛼), (36a)

𝑤2(𝑥̂, 𝛼;𝜙) =
(1 − 𝛼)𝑄̃𝜙(𝑦1=2|𝑥 = 𝑥)

𝛼𝑄̃𝜙(𝑦1=1|𝑥 = 𝑥) + (1 − 𝛼)𝑄̃𝜙(𝑦1=2|𝑥 = 𝑥)
≈ 𝑝(𝑦2=2|𝑥 = 𝑥; 𝛼). (36b)

Since these expressions involve outputs of the terminal state classifier which is being trained simultaneously, we again
(see Section 5.2) introduce the target network parameters 𝜙 that are used to compute the probability estimates (36).

20

Compositional Sculpting of Iterative Generative Processes

The training loss for the non-terminal state classifier is

𝑁 (𝜙, 𝜙) = 𝔼
𝛼∼𝑝(𝛼)

𝔼
(𝜏,𝑦1)∼𝑝(𝜏,𝑦1)

⎡⎢⎢⎣

2∑
𝑦2=1

𝑤𝑦2 (𝑥, 𝛼;𝜙)𝓁(𝜏, 𝑦1, 𝑦2, 𝛼;𝜙)
⎤⎥⎥⎦
, (37)

where 𝑝(𝛼) is sampling distribution over 𝛼 ∈ (0, 1). In our experiments, we used the following sampling scheme for 𝛼:
𝑧 ∼ 𝑈 [−𝐵,𝐵], 𝛼 = 1

1 + exp(−𝑧)
. (38)

B Analysis of Compositional Sculpting and Energy Operations

In this Section we provide additional mathematical analysis of compositional sculpting operations (harmonic mean,
contrast, defined in Section 4.1) and energy operations (product, negation, defined in Section 2.4)
Harmonic mean and product are not defined for pairs of distributions 𝑝1, 𝑝2 which have disjoint supports. In such cases,
attempts at evaluation of the expressions for 𝑝1 ⊗𝑝2 and 𝑝1 prod 𝑝2 will lead to impossible probability distributions that
have zero probability mass (density) everywhere4. The result of both harmonic mean and product are correctly defined
for any pair of distributions 𝑝1, 𝑝2 that have non-empty support intersection.
Notably, contrast is well-defined for any input distributions while negation is ill-defined for some input distributions 𝑝1,
𝑝2 as formally stated below (see Figure 2 (d) for a concrete example).
Proposition B.1.

1. For any 𝛼 ∈ (0, 1) the parameterized contrast operation 𝑝1◑ (1−𝛼) 𝑝2 (11) is well-defined: gives a proper
distribution for any pair of distributions 𝑝1, 𝑝2.

2. For any 𝛾 ∈ (0, 1) there are infinitely many pairs of distributions 𝑝1, 𝑝2 such that the negation 𝑝1 neg𝛾 𝑝2 (3)
results in an improper (non-normalizable) distribution.

Proof. Without loss of generality, we prove the claims of the proposition assuming absolutely continuous distributions
𝑝1, 𝑝2 with probability density functions 𝑝1(⋅), 𝑝2(⋅).
Claim 1. For any two distributions 𝑝1, 𝑝2 we have 𝑝1(𝑥) ≥ 0, 𝑝2(𝑥) ≥ 0, ∫ 𝑝1(𝑥) 𝑑𝑥 = ∫ 𝑝2(𝑥) 𝑑𝑥 = 1 < ∞. Then,
the RHS of the expression for the parameterized contrast operation 𝑝1◑ (1−𝛼) 𝑝2 (11) satisfies

𝑝1(𝑥)2

𝛼𝑝1(𝑥) + (1 − 𝛼)𝑝2(𝑥)
=

𝑝1(𝑥)
𝛼

⋅
𝑝1(𝑥)

𝑝1(𝑥) +
(1−𝛼)
𝛼 𝑝2(𝑥)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
≤1

≤
𝑝1(𝑥)
𝛼

, ∀ 𝑥 ∈ supp(𝑝1) ∪ supp(𝑝2). (39)

For points 𝑥 ∉ supp(𝑝1) ∪ supp(𝑝2), we set 𝑝1(𝑥)2

𝛼𝑝1(𝑥)+(1−𝛼)𝑝2(𝑥)
= 0 since by construction the composite distributions do

not have probability mass outside of the union of the supports of the original distributions. The above implies that

∫

𝑝21(𝑥)
𝛼𝑝1(𝑥) + (1 − 𝛼)𝑝2(𝑥)

𝑑𝑥 ≤ 1
𝛼 ∫

𝑝1(𝑥) 𝑑𝑥 = 1
𝛼
< ∞. (40)

Therefore, the RHS of the expression for the parameterized contrast operation 𝑝1◑ (1−𝛼) 𝑝2 (11) can be normalized, and
the distribution 𝑝1◑ (1−𝛼) 𝑝2 is well-defined.
Claim 2. For any 𝛾 ∈ (0, 1) we provide an infinite collection of distribution pairs 𝑝1 and 𝑝2 such that negation
𝑝1 neg𝛾 𝑝2 results in a non-normalizable distribution.
For the given 𝛾 ∈ (0, 1) we select four numbers 𝜇1 ∈ ℝ, 𝜇2 ∈ ℝ, 𝜎1 > 0, 𝜎2 > 0 such that

𝜎21 ≥ 1
𝛾
𝜎22 , (41)

4Informal interpretation: distributions with disjoint supports have empty “intersections” (think of the intersection of sets analogy)

21

Compositional Sculpting of Iterative Generative Processes

Consider univariate normal distributions 𝑝1(𝑥) =  (𝑥;𝜇1, 𝜎21), 𝑝2(𝑥) =  (𝑥;𝜇2, 𝜎22) with density functions

𝑝𝑖(𝑥) =  (𝑥;𝜇𝑖, 𝜎2𝑖) =
1√
2𝜋𝜎2𝑖

exp

{
−
(𝑥 − 𝜇𝑖)2

2𝜎2𝑖

}
, 𝑖 ∈ {1, 2}. (42)

For such 𝑝1 and 𝑝2, the RHS of (3) is
𝑝1(𝑥)

(𝑝2(𝑥))𝛾
= 1(√

2𝜋
)1−𝛾

𝜎𝛾2
𝜎1

exp

{
𝑥2

(
𝛾𝜎21 − 𝜎22
2𝜎21𝜎

2
2

)
+ 𝑥

(
𝜇1
𝜎21

− 𝛾
𝜇2
𝜎22

)
+ 𝛾

𝜇2
2

2𝜎22
−

𝜇2
1

2𝜎21

}
. (43)

Conditions (41) imply that the quadratic function under the exponent above has a non-negative coefficient for 𝑥2.
Therefore this function either grows unbounded as 𝑥 → ∞ (if the coefficients for the quadratic and linear terms are not
zero), or constant (if the coefficients for quadratic and linear terms are zero). In either case, ∫ℝ 𝑝1(𝑥)∕(𝑝2(𝑥))𝛾 𝑑𝑥 = ∞.

C Proofs and Derivations

C.1 Proof of Proposition 5.1

Our goal is to show that the policy (17) induces the mixture distribution 𝑝𝑀 (𝑥) =
∑𝑚

𝑖=1 𝜔𝑖𝑝𝑖(𝑥).
Preliminaries. In our proof below we use the notion of “the probability of observing a state 𝑠 ∈  on a GFlowNet
trajectory”. Following Bengio et al. [35], we abuse the notation and denote this probability by

𝑝𝑖(𝑠) ≜ 𝑝𝑖({𝜏 ∶ 𝑠 ∈ 𝜏}) =
∑

𝜏∈𝑠0 ,𝑠

|𝜏|−1∏
𝑡=0

𝑝𝑖,𝐹 (𝑠𝑡|𝑠𝑡−1), (44)

where 𝑠0,𝑠 is the set of all (sub)trajectories starting at 𝑠0 and ending at 𝑠. The probabilities induced by the policy (17)
are denoted by 𝑝𝑀 (𝑠). Note that 𝑝𝑖(𝑠) and 𝑝𝑀 (𝑠) should not be interpreted as probability mass functions over the set of
states  . In particular 𝑝𝑖(𝑠0) = 𝑝𝑀 (𝑠0) = 1 and sums ∑𝑠∈ 𝑝𝑖(𝑠), ∑𝑠∈ 𝑝𝑀 (𝑠) are not equal to 1 (unless  = {𝑠0}).
However, the functions 𝑝𝑖(⋅), 𝑝𝑀 (⋅) restricted to the set of terminal states  give valid probability distributions over  :∑

𝑥∈ 𝑝𝑖(𝑥) =
∑

𝑥∈ 𝑝𝑀 (𝑥) = 1.
By definition 𝑝𝑖(⋅) and 𝑝𝑀 (⋅) satisfy the recurrent relationship

𝑝𝑖(𝑠) =
∑

𝑠∗∶(𝑠∗→𝑠)∈
𝑝𝑖(𝑠∗)𝑝𝑖,𝐹 (𝑠|𝑠∗), 𝑝𝑀 (𝑠) =

∑
𝑠∗∶(𝑠∗→𝑠)∈

𝑝𝑀 (𝑠∗)𝑝𝑀,𝐹 (𝑠|𝑠∗). (45)

The joint distribution of 𝑦 and 𝜏 described in the statement of Proposition 5.1 is 𝑝(𝜏, 𝑦 = 𝑖) = 𝑤𝑖𝑝𝑖(𝜏). This joint
distribution over 𝑦 and trajectories implies the following expressions for the distributions involving intermediate states 𝑠.

𝑝(𝑦= 𝑖) = 𝜔𝑖, (46)

𝑝(𝜏|𝑦= 𝑖) = 𝑝𝑖(𝜏) =
|𝜏|−1∏
𝑡=0

𝑝𝑖,𝐹 (𝑠𝑡|𝑠𝑡−1), (47)

𝑝(𝜏) =
𝑚∑
𝑖=1

𝑝(𝜏|𝑦= 𝑖)𝑝(𝑦= 𝑖) =
𝑚∑
𝑖=1

𝜔𝑖𝑝𝑖(𝜏), (48)
𝑝(𝑠|𝑦= 𝑖) = 𝑝𝑖(𝑠), (49)

𝑝(𝑠) =
𝑚∑
𝑖=1

𝑝(𝑠|𝑦= 𝑖)𝑝(𝑦= 𝑖) =
𝑚∑
𝑖=1

𝜔𝑖𝑝𝑖(𝑠). (50)

Proof. Using the notation introduced above, we can formally state our goal. We need to show that 𝑝𝑀 (𝑥) induced by
𝑝𝑀,𝐹 gives the mixture distribution

𝑝𝑀 (𝑥) =
𝑚∑
𝑖=1

𝜔𝑖𝑝𝑖(𝑥). (51)

22

Compositional Sculpting of Iterative Generative Processes

We prove a more general equation for all states 𝑠 ∈ 

𝑝𝑀 (𝑠) =
𝑚∑
𝑖=1

𝜔𝑖𝑝𝑖(𝑠) (52)

by induction over the DAG ( ,).
Base case. Consider the initial state 𝑠0 ∈  . By definition 𝑝𝑖(𝑠0) = 𝑝𝑀 (𝑠0) = 1 which implies

𝑝𝑀 (𝑠0) =
𝑚∑
𝑖=1

𝜔𝑖𝑝𝑖(𝑠0). (53)

Inductive step. Consider a state 𝑠 such that (52) holds for all predecessor states 𝑠∗ ∶ (𝑠∗ → 𝑠) ∈ . For such a state
we have

𝑝𝑀 (𝑠) =
∑

𝑠∗∶(𝑠∗→𝑠)∈
𝑝𝑀 (𝑠∗)𝑝𝑀,𝐹 (𝑠 | 𝑠∗) {used (45)} (54)

=
∑

𝑠∗∶(𝑠∗→𝑠)∈
𝑝𝑀 (𝑠∗)

(𝑚∑
𝑖=1

𝑝(𝑦 = 𝑖|𝑠∗)𝑝𝑖,𝐹 (𝑠|𝑠∗)
)

{used definition of 𝑝𝑀,𝐹 } (55)

=
∑

𝑠∗∶(𝑠∗→𝑠)∈

𝑝𝑀 (𝑠∗)
𝑝(𝑠∗)

(𝑚∑
𝑖=1

𝑝(𝑠∗|𝑦= 𝑖)𝑝(𝑦= 𝑖)𝑝𝑖,𝐹 (𝑠|𝑠∗)
)

{used Bayes’ theorem} (56)

=
∑

𝑠∗∶(𝑠∗→𝑠)∈

𝑝𝑀 (𝑠∗)∑𝑚
𝑖=1 𝜔𝑖𝑝𝑖(𝑠∗)

(𝑚∑
𝑖=1

𝜔𝑖𝑝𝑖(𝑠∗)𝑝𝑖,𝐹 (𝑠|𝑠∗)
)

{used (46), (49), (50)} (57)

=
∑

𝑠∗∶(𝑠∗→𝑠)∈

(𝑚∑
𝑖=1

𝜔𝑖𝑝𝑖(𝑠∗)𝑝𝑖,𝐹 (𝑠|𝑠∗)
)

{used induction hypothesis} (58)

=
𝑚∑
𝑖=1

𝜔𝑖

(∑
𝑠∗∶(𝑠∗→𝑠)∈

𝑝𝑖(𝑠∗)𝑝𝑖,𝐹 (𝑠|𝑠∗)
)

{changed summation order} (59)

=
𝑚∑
𝑖=1

𝜔𝑖𝑝𝑖(𝑠), {used (45)} (60)

which proves (52) for 𝑠.

C.2 Proof of Proposition 5.2

Claim 1. Our goal is to prove the relationship (18) for all non-terminal states 𝑠 ∈  ⧵  . To prove this relationship, we
invoke several important properties of Markovian probability flows on DAGs [35].
By Proposition 16 of Bengio et al. [35] for the given GFlowNet forward policy 𝑝𝐹 (⋅|⋅) there exists a unique backward
policy 𝑝𝐵(⋅|⋅) such that the probability of any complete trajectory 𝜏 = (𝑠0 → … → 𝑠|𝜏| = 𝑥) in DAG ( ,) can be
expressed as

𝑝(𝜏) = 𝑝(𝑥)
|𝜏|∏
𝑡=1

𝑝𝐵(𝑠𝑡−1|𝑠𝑡), (61)

and the probability of observing a state 𝑠 ∈  on a trajectory can be expressed as

𝑝(𝑠) =
∑
𝑥∈

𝑝(𝑥)
∑

𝜏∈𝑠,𝑥

|𝜏|∏
𝑡=1

𝑝𝐵(𝑠𝑡−1|𝑠𝑡), (62)

where 𝑠,𝑥 is the set of all (sub)trajectories starting at 𝑠 and ending at 𝑥. Moreover, 𝑝𝐹 (⋅|⋅) and 𝑝𝐵(⋅|⋅) are related through
the “detailed balance condition” [35, Proposition 21]

𝑝(𝑠)𝑝𝐹 (𝑠′|𝑠) = 𝑝(𝑠′)𝑝𝐵(𝑠|𝑠′), ∀ (𝑠 → 𝑠′) ∈ . (63)

23

Compositional Sculpting of Iterative Generative Processes

By the statement of Proposition 5.2, in the probabilistic model 𝑝(𝑥, 𝑦), the marginal distribution 𝑝(𝑥) is realized by the
GFlowNet forward policy 𝑝𝐹 (⋅|⋅) and 𝑦 is independent of intermediate states 𝑠. The joint distribution 𝑝(𝑠, 𝑦) is given by

𝑝(𝑠, 𝑦) =
∑
𝑥∈

𝑝(𝑥, 𝑦)
∑

𝜏∈𝑠,𝑥

|𝜏|∏
𝑡=1

𝑝𝐵(𝑠𝑡−1|𝑠𝑡) (64)

=
∑
𝑥∈

𝑝(𝑥, 𝑦)
∑

𝑠′∶(𝑠→𝑠′)∈
𝑝𝐵(𝑠|𝑠′)

∑
𝜏∈𝑠′ ,𝑥

|𝜏|∏
𝑡=1

𝑝𝐵(𝑠𝑡−1|𝑠𝑡) (65)

=
∑

𝑠′∶(𝑠→𝑠′)∈
𝑝𝐵(𝑠|𝑠′)

∑
𝑥∈

𝑝(𝑥, 𝑦)
∑

𝜏∈𝑠′ ,𝑥

|𝜏|∏
𝑡=1

𝑝𝐵(𝑠𝑡−1|𝑠𝑡)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑝(𝑠′,𝑦)

(66)

=
∑

𝑠′∶(𝑠→𝑠′)∈
𝑝𝐵(𝑠|𝑠′)𝑝(𝑠′, 𝑦). (67)

Expressing the conditional probability 𝑝(𝑦|𝑠) through the joint 𝑝(𝑠, 𝑦) we obtain
𝑝(𝑦|𝑠) = 𝑝(𝑠, 𝑦)

𝑝(𝑠)
{used definition of conditional probability} (68)

= 1
𝑝(𝑠)

∑
𝑠′∶(𝑠→𝑠′)∈

𝑝𝐵(𝑠|𝑠′)𝑝(𝑠′, 𝑦) {used (67)} (69)

=
∑

𝑠′∶(𝑠→𝑠′)∈
𝑝𝐵(𝑠|𝑠′)𝑝(𝑠

′)
𝑝(𝑠)

𝑝(𝑦|𝑠′) {decomposed 𝑝(𝑠′, 𝑦) = 𝑝(𝑠′)𝑝(𝑦|𝑠′)} (70)

=
∑

𝑠′∶(𝑠→𝑠′)∈
𝑝𝐹 (𝑠′|𝑠)𝑝(𝑦|𝑠′), {used (63)} (71)

which proves (18).
Claim 2. Our goal is to show that the classifier-guided policy (19) induces the conditional distribution 𝑝(𝑦|𝑥).
We know (Section C.1) that the state probabilities induced by the marginal GFlowNet policy 𝑝𝐹 (⋅|⋅) satisfy the recurrence

𝑝(𝑠) =
∑

𝑠∗∶(𝑠∗→𝑠)∈
𝑝(𝑠∗)𝑝𝐹 (𝑠|𝑠∗). (72)

Let 𝑝𝑦(⋅) denote the state probabilities induced by the classifier-guided policy (19). These probabilities by definition
(Section C.1) satisfy the recurrence

𝑝𝑦(𝑠) =
∑

𝑠∗∶(𝑠∗→𝑠)∈
𝑝𝑦(𝑠∗)𝑝𝐹 (𝑠|𝑠∗, 𝑦). (73)

We show that
𝑝𝑦(𝑠) = 𝑝(𝑠|𝑦), (74)

by induction over DAG ( ,).
Base case. Consider the initial state 𝑠0. By definition 𝑝𝑦(𝑠0) = 1. At the same time 𝑝(𝑠0|𝑦) = 𝑝({𝜏 ∶ 𝑠0 ∈ 𝜏}|𝑦) = 1.
Therefore 𝑝𝑦(𝑠0) = 𝑝(𝑠0|𝑦).
Inductive step. Consider a state 𝑠 such that (74) holds for all predecessor states 𝑠∗ ∶ (𝑠∗ → 𝑠) ∈ . For such a state
we have

𝑝𝑦(𝑠) =
∑

𝑠∗∶(𝑠∗→𝑠)∈
𝑝𝑦(𝑠∗)𝑝𝐹 (𝑠|𝑠∗, 𝑦) {used (73)} (75)

=
∑

𝑠∗∶(𝑠∗→𝑠)∈
𝑝𝑦(𝑠∗)𝑝𝐹 (𝑠|𝑠∗) 𝑝(𝑦|𝑠)𝑝(𝑦|𝑠∗) {used (19)} (76)

=
∑

𝑠∗∶(𝑠∗→𝑠)∈
𝑝(𝑠∗|𝑦)𝑝𝐹 (𝑠|𝑠∗) 𝑝(𝑦|𝑠)𝑝(𝑦|𝑠∗) {used induction hypothesis} (77)

24

Compositional Sculpting of Iterative Generative Processes

=
∑

𝑠∗∶(𝑠∗→𝑠)∈

𝑝(𝑦|𝑠∗)𝑝(𝑠∗)
𝑝(𝑦)

𝑝𝐹 (𝑠|𝑠∗) 𝑝(𝑦|𝑠)𝑝(𝑦|𝑠∗) {used Bayes’ theorem} (78)

= 𝑝(𝑦|𝑠)
𝑝(𝑦)

∑
𝑠∗∶(𝑠∗→𝑠)∈

𝑝(𝑠∗)𝑝𝐹 (𝑠|𝑠∗) {rearranged terms} (79)

= 𝑝(𝑦|𝑠)
𝑝(𝑦)

𝑝(𝑠) {used (72)} (80)
= 𝑝(𝑠|𝑦), {used Bayes’ theorem} (81)

which proves (74) for state 𝑠.

C.3 Proof of Theorem 5.3

By Proposition 5.1 we have that the policy

𝑝𝑀,𝐹 (𝑠′|𝑠) =
𝑚∑
𝑖=1

𝑝𝑖,𝐹 (𝑠′|𝑠)𝑝(𝑦= 𝑖|𝑠), (82)

generates the mixture distribution 𝑝𝑀 (𝑥) = 1
𝑚
∑𝑚

𝑖=1 𝑝𝑖(𝑥).
In the probabilistic model 𝑝(𝑥, 𝑦1… , 𝑦𝑛) the marginal distribution 𝑝(𝑥) = 𝑝𝑀 (𝑥) is realized by the mixture policy
𝑝𝑀,𝐹 . Therefore, 𝑝(𝑥, 𝑦1,… , 𝑦𝑛) satisfies the conditions of Proposition 5.2 which states that the conditional distribution
𝑝(𝑥|𝑦1,… , 𝑦𝑛) is realized by the classifier-guided policy

𝑝𝐹 (𝑠′|𝑠, 𝑦1,… , 𝑦𝑛) = 𝑝𝑀,𝐹 (𝑠′|𝑠)
𝑝(𝑦1,… , 𝑦𝑛|𝑠′)
𝑝(𝑦1,… , 𝑦𝑛|𝑠)

=
𝑝(𝑦1,… 𝑦𝑛 | 𝑠′)
𝑝(𝑦1,… 𝑦𝑛 | 𝑠)

𝑚∑
𝑖=1

𝑝𝑖,𝐹 (𝑠′|𝑠)𝑝(𝑦= 𝑖|𝑠). (83)

C.4 Detailed Derivation of Classifier Training Objective

This section provides a more detailed step-by-step derivation of the non-terminal state classifier training objective (23).
Step 1. Our goal is to train a classifier 𝑄̃(𝑦1,… , 𝑦𝑛|𝑠). This classifier can be obtained as the optimal solution of

min
𝜙

𝔼𝜏,𝑦1,…,𝑦𝑛∼𝑝(𝜏,𝑦1,…,𝑦𝑛)
[
𝓁(𝜏, 𝑦1,… , 𝑦𝑛;𝜙)

]
, (84)

where 𝓁(⋅) is defined in equation (22). An unbiased estimate of the loss (and its gradient) can be obtained by sampling
(𝜏, 𝑦1,… , 𝑦𝑛) and evaluating (22) directly. However sampling tuples (𝜏, 𝑦1,… , 𝑦𝑛) is not straightforward. The following
steps describe our proposed approach to the estimation of expectation in (84).
Step 2. The expectation in (84) can be expressed as

𝔼𝜏,𝑦1∼𝑝(𝜏,𝑦1)

⎡
⎢⎢⎣

𝑚∑
𝑦2=1

⋯
𝑚∑

𝑦𝑛=1

(𝑛∏
𝑖=2

𝑝(𝑦𝑖=𝑦𝑖|𝑥=𝑥)

)
𝓁(𝜏, 𝑦1,… , 𝑦𝑛;𝜙)

⎤⎥⎥⎦
, (85)

where we re-wrote the expectation over (𝑦2,… , 𝑦𝑛)|𝜏 as the explicit sum of the form 𝔼𝑞(𝑧)[𝑔(𝑧)] =
∑

𝑧∈ 𝑞(𝑧)𝑔(𝑧). The
expectation over (𝜏, 𝑦1) can be estimated by sampling pairs (𝜏, 𝑦1) as described in the paragraph after equation (22): 1)
𝑦1 ∼ 𝑝(𝑦1) and 2) 𝜏 ∼ 𝑝𝑦1 (𝜏). The only missing part is the probabilities 𝑝(𝑦𝑖=𝑦𝑖|𝑥=𝑥) which are not directly available.
Step 3. Our proposal is to approximate these probabilities as 𝑝(𝑦1=𝑗|𝑥=𝑥) ≈ 𝑤𝑗(𝑥;𝜙) = 𝑄̃𝜙(𝑦1=𝑗|𝑥=𝑥). The idea
here is that the terminal state classifier 𝑄̃𝜙(𝑦1|𝑥), when trained to optimality, produces outputs exactly equal to the
probabilities 𝑝(𝑦1|𝑥), and the more the classifier is trained the better is the approximation of the probabilities.
Step 4. Steps 1-3, give a procedure where the computation of the non-terminal state classification loss requires
access to the terminal state classifier. As we described in the paragraph preceding equation (23), we propose to train
non-terminal and terminal classifiers simultaneously and introduce “target network” parameters. The weights 𝑤 are
computed by the target network 𝑄̃𝜙.
Combining all the steps above, we arrive at objective (23) which we use to estimate the expectation in (84).

25

Compositional Sculpting of Iterative Generative Processes

C.5 Assumptions and Proof of Proposition 5.4

This subsection provides a formal statement of the assumptions and a more detailed formulation of Proposition 5.4.
The assumptions, the formulation of the result, and the proof below closely follow those of Theorem 1 of Peluchetti
[53]. Theorem 1 in [53] generalizes the result of Brigo [62] (Corollary 1.3), which derives the SDE for mixtures of 1D
diffusion processes.
We found an error in the statement and the proof of Theorem 1 (Appendix A.2 of [53]). The error makes the result of
[53] for 𝐷-dimensional diffusion processes disagree with the result of [62] for 1-dimensional diffusion processes.
Here we provide a corrected version of Theorem 1 of [53] in a modified notation and a simplified setting (mixture of
finite rather than infinite number of diffusion processes). Most of the content is directly adapted from [53].
Notation:

• for a vector-valued 𝑓 ∶ ℝ𝐷 → ℝ𝐷, the divergence of 𝑓 is denoted as ∇ ⋅ (𝑓 (𝑥)) =
∑𝐷

𝑑=1
𝜕

𝜕𝑥𝑑
𝑓𝑑(𝑥),

• for a scalar-values 𝑎 ∶ ℝ𝐷 → ℝ, the divergence of the gradient of 𝑎 (the Laplace operator) is denoted by
Δ(𝑎(𝑥)) = ∇ ⋅ (∇𝑎(𝑥)) =

∑𝐷
𝑑=1

𝜕2

𝜕𝑥2𝑑
𝑎(𝑥).

Assumption 1 (SDE solution). A given 𝐷-dimensional SDE(𝑓, 𝑔):
𝑑𝑥𝑡 = 𝑓𝑡(𝑥𝑡)𝑑𝑡 + 𝑔𝑡𝑑𝑤𝑡, (86)

with associated initial distribution 𝑝0(𝑥) and integration interval [0, 𝑇] admits a unique strong solution on [0, 𝑇].
Assumption 2 (SDE density). A given𝐷-dimensional SDE(𝑓, 𝑔)with associated initial distribution 𝑝0(𝑥) and integration
interval [0, 𝑇] admits a marginal density on (0, 𝑇) with respect to the 𝐷-dimensional Lebesgue measure that uniquely
satisfies the Fokker-Plank (Kolmogorov-forward) partial differential equation (PDE):

𝜕𝑝𝑡(𝑥)
𝜕𝑡

= −∇ ⋅ (𝑓𝑡(𝑥)𝑝𝑡(𝑥)) +
1
2
Δ(𝑔2𝑡 𝑝𝑡(𝑥)). (87)

Assumption 3 (positivity). For a given stochastic process, all finite-dimensional densities, conditional or not, are strictly
positive.
Theorem C.1 (Diffusion mixture representation). Consider the family of 𝐷-dimensional SDEs on 𝑡 ∈ [0, 𝑇] indexed by
𝑖 ∈ {1,… , 𝑚},

𝑑𝑥𝑖,𝑡 = 𝑓𝑖,𝑡(𝑥𝑖,𝑡)𝑑𝑡 + 𝑔𝑖,𝑡𝑑𝑤𝑖,𝑡, 𝑥𝑖,0 ∼ 𝑝𝑖,0, (88)
where the initial distributions 𝑝𝑖,0 and the Wiener processes 𝑤𝑖,𝑡 are all independent. Let 𝑝𝑖,𝑡, 𝑡 ∈ (0, 𝑇) denote the
marginal density of 𝑥𝑖,𝑡. For mixing weights {𝜔𝑖}𝑚𝑖=1, 𝜔𝑖 ≥ 0,

∑𝑚
𝑖=1 𝜔𝑖 = 1, define the mixture marginal density 𝑝𝑀,𝑡 for

𝑡 ∈ (0, 𝑇) and the mixture initial distribution 𝑝𝑀,0 by

𝑝𝑀,𝑡(𝑥) =
𝑚∑
𝑖=1

𝜔𝑖𝑝𝑖,𝑡(𝑥) 𝑝𝑀,0(𝑥) =
𝑚∑
𝑖=1

𝜔𝑖𝑝𝑀,0(𝑥). (89)

Consider the 𝐷-dimensional SDE on 𝑡 ∈ [0, 𝑇] defined by

𝑓𝑀,𝑡(𝑥) =
∑𝑚

𝑖=1 𝜔𝑖𝑝𝑖,𝑡(𝑥)𝑓𝑖,𝑡(𝑥)
𝑝𝑀,𝑡(𝑥)

, 𝑔𝑀,𝑡(𝑥) =

√√√√
∑𝑚

𝑖=1 𝜔𝑖𝑝𝑖,𝑡(𝑥)𝑔2𝑖,𝑡
𝑝𝑀,𝑡(𝑥)

, (90)
𝑑𝑥𝑡 = 𝑓𝑀,𝑡(𝑥𝑡)𝑑𝑡 + 𝑔𝑀,𝑡(𝑥𝑡)𝑑𝑤𝑡, 𝑥𝑀,0 ∼ 𝑝𝑀,0. (91)

It is assumed that all diffusion processes 𝑥𝑖,𝑡 and the diffusion process 𝑥𝑀,𝑡 satisfy the regularity Assumptions 1, 2, and
3. Then the marginal distribution of the diffusion 𝑥𝑀,𝑡 is 𝑝𝑀,𝑡.

Proof. For 0 < 𝑡 < 𝑇 we have that
𝜕𝑝𝑀,𝑡(𝑥)

𝜕𝑡
= 𝜕

𝜕𝑡

(𝑚∑
𝑖=1

𝜔𝑖𝑝𝑖,𝑡(𝑥)

)
(92)

26

Compositional Sculpting of Iterative Generative Processes

=
𝑚∑
𝑖=1

𝜔𝑖
𝜕𝑝𝑖,𝑡(𝑥)

𝜕𝑡
(93)

=
𝑚∑
𝑖=1

𝜔𝑖

(
−∇ ⋅ (𝑓𝑖,𝑡(𝑥)𝑝𝑖,𝑡(𝑥)) +

1
2
Δ(𝑔2𝑖,𝑡𝑝𝑖,𝑡(𝑥))

)
(94)

=
𝑚∑
𝑖=1

𝜔𝑖

(
−∇ ⋅

(𝑝𝑖,𝑡(𝑥)𝑓𝑖,𝑡(𝑥)
𝑝𝑀,𝑡(𝑥)

𝑝𝑀,𝑡(𝑥)
)
+ 1

2
Δ

(
𝑝𝑖,𝑡(𝑥)𝑔2𝑖,𝑡
𝑝𝑀,𝑡(𝑥)

𝑝𝑀,𝑡(𝑥)

))
(95)

= −∇ ⋅

(𝑚∑
𝑖=1

𝜔𝑖𝑝𝑖,𝑡(𝑥)𝑓𝑖,𝑡(𝑥)
𝑝𝑀,𝑡(𝑥)

𝑝𝑀,𝑡(𝑥)

)
+ 1

2
Δ

(𝑚∑
𝑖=1

𝜔𝑖𝑝𝑖,𝑡(𝑥)𝑔2𝑖,𝑡
𝑝𝑀,𝑡(𝑥)

𝑝𝑀,𝑡(𝑥)

)
(96)

= −∇ ⋅ (𝑓𝑀,𝑡(𝑥)𝑝𝑀,𝑡(𝑥)) +
1
2
Δ(𝑔2𝑀,𝑡𝑝𝑀,𝑡(𝑥)). (97)

The second is an exchange of the order of summation and differentiation, the third line is the application of the Fokker-
Planck PDEs for processes 𝑥𝑖,𝑡, the fourth line is a rewriting in terms of 𝑝𝑀,𝑡, the fifth line is another exchange of the
order of summation and differentiation. The result follows by noticing that 𝑝𝑀,𝑡(𝑥) satisfies the Fokker-Planck equation
of SDE(𝑓𝑀 , 𝑔𝑀).
Proof of Proposition 5.4. Below, we show that the result of Proposition 5.4 follows from Theorem C.1.
First, we rewrite 𝑓𝑀,𝑡(𝑥𝑡) and 𝑔𝑀,𝑡(𝑥𝑡) in (90) in terms of the classifier probabilities (26):

𝑓𝑀,𝑡(𝑥𝑡) =
∑𝑚

𝑖=1 𝜔𝑖𝑝𝑖,𝑡(𝑥𝑡)𝑓𝑖,𝑡(𝑥𝑡)
𝑝𝑀,𝑡(𝑥𝑡)

=
𝑚∑
𝑖=1

𝑝(𝑦= 𝑖|𝑥𝑡)𝑓𝑖,𝑡(𝑥𝑡), (98)

𝑔𝑀,𝑡(𝑥𝑡) =

√√√√
∑𝑚

𝑖=1 𝜔𝑖𝑝𝑖,𝑡(𝑥𝑡)𝑔2𝑖,𝑡
𝑝𝑀,𝑡(𝑥𝑡)

=

√√√√ 𝑚∑
𝑖=1

𝑝(𝑦= 𝑖|𝑥𝑡)𝑔2𝑖,𝑡. (99)

With these expressions, we apply the result of Theorem C.1 to the base forward processes 𝑑𝑥𝑖,𝑡 = 𝑓𝑖,𝑡(𝑥𝑖,𝑡) 𝑑𝑡+ 𝑔𝑖,𝑡 𝑑𝑤𝑖,𝑡and obtain the mixture forward process in equation (24).
From the forward process, we derive the backward process following Song et al. [34]. Using the result of Anderson
[38], the backward process for (24) is given by

𝑑𝑥𝑡 =
[
𝑓𝑀,𝑡(𝑥𝑡) − ∇𝑥𝑡 (𝑔

2
𝑀,𝑡(𝑥𝑡)) − 𝑔2𝑀,𝑡(𝑥𝑡)∇𝑥𝑡 log 𝑝𝑀,𝑡(𝑥𝑡)

]
𝑑𝑡 + 𝑔𝑀,𝑡(𝑥𝑡) 𝑑𝑤𝑡. (100)

Note that the term ∇𝑥𝑡 (𝑔
2
𝑀,𝑡(𝑥𝑡)) is due to the fact that the diffusion coefficient 𝑔𝑀,𝑡(𝑥𝑡) in (24) is a function of 𝑥 (cf.,

equation (16), Appendix A in [34]). This term can be transformed as follows
∇𝑥𝑡 (𝑔

2
𝑀,𝑡(𝑥𝑡)) = ∇𝑥𝑡

(𝑚∑
𝑖=1

𝑝(𝑦= 𝑖|𝑥𝑡)𝑔2𝑖,𝑡
)

(101)

=
𝑚∑
𝑖=1

𝑔2𝑖,𝑡∇𝑥𝑡𝑝(𝑦= 𝑖|𝑥𝑡) (102)

=
𝑚∑
𝑖=1

𝑝(𝑦= 𝑖|𝑥𝑡)𝑔2𝑖,𝑡∇𝑥𝑡 log 𝑝(𝑦= 𝑖|𝑥𝑡) (103)

=
𝑚∑
𝑖=1

𝑝(𝑦= 𝑖|𝑥𝑡)𝑔2𝑖,𝑡∇𝑥𝑡

(
log𝜔𝑖 + log 𝑝𝑖,𝑡(𝑥𝑡) − log 𝑝𝑀,𝑡(𝑥𝑡)

)
(104)

=
𝑚∑
𝑖=1

𝑝(𝑦= 𝑖|𝑥𝑡)𝑔2𝑖,𝑡
(
∇𝑥𝑡 log 𝑝𝑖,𝑡(𝑥𝑡) − ∇𝑥𝑡 log 𝑝𝑀,𝑡(𝑥𝑡)

)
(105)

=

(𝑚∑
𝑖=1

𝑝(𝑦= 𝑖|𝑥𝑡)𝑔2𝑖,𝑡𝑠𝑖,𝑡(𝑥𝑡)
)

− 𝑔2𝑀,𝑡(𝑥𝑡)∇𝑥𝑡 log 𝑝𝑀,𝑡(𝑥𝑡). (106)

Substituting the last expression in (100), we notice that the term 𝑔2𝑀,𝑡(𝑥𝑡)∇𝑥𝑡 log 𝑝𝑀,𝑡(𝑥𝑡) cancels out, and, after simple
algebraic manipulations, we arrive at (25).

27

Compositional Sculpting of Iterative Generative Processes

C.6 Proof of Theorem 5.5

We proove Theorem 5.5 in the assumptions of Section C.5. In Section C.5 we established that the mixture diffusion
process has the forward SDE

𝑑𝑥𝑡 = 𝑓𝑀,𝑡(𝑥𝑡)𝑑𝑡 + 𝑔𝑀,𝑡(𝑥𝑡) 𝑑𝑤𝑡. (107)
and the backward SDE

𝑑𝑥𝑡 =
[
𝑓𝑀,𝑡(𝑥𝑡) − ∇𝑥𝑡 (𝑔

2
𝑀,𝑡(𝑥𝑡)) − 𝑔2𝑀,𝑡(𝑥𝑡)∇𝑥𝑡 log 𝑝𝑀,𝑡(𝑥𝑡)

]
𝑑𝑡 + 𝑔𝑀,𝑡(𝑥𝑡) 𝑑𝑤𝑡. (108)

We apply classifier guidance with classifier 𝑝(𝑦1,… , 𝑦𝑛|𝑥𝑡) to the mixture diffusion process, following Song et al. [34]
(see equations (48)-(49) in [34]). The backward SDE of the classifier-guided mixture diffusion is
𝑑𝑥𝑡 =

[
𝑓𝑀,𝑡(𝑥𝑡) − ∇𝑥𝑡 (𝑔

2
𝑀,𝑡(𝑥𝑡)) − 𝑔2𝑀,𝑡(𝑥𝑡)

(
∇𝑥𝑡 log 𝑝𝑀,𝑡(𝑥𝑡) + ∇𝑥𝑡 log 𝑝(𝑦1,… , 𝑦𝑛|𝑥𝑡)

)]
𝑑𝑡 + 𝑔𝑀,𝑡(𝑥𝑡) 𝑑𝑤𝑡. (109)

Finally, we arrive at (28) by substituting (106) in the above, canceling out the term 𝑔2𝑀,𝑡(𝑥𝑡)∇𝑥𝑡 log 𝑝𝑀,𝑡(𝑥𝑡), and applying
simple algebraic manipulations.

D Implementation Details

D.1 Classifier Guidance in GFlowNets

Classifier guidance in GFlowNets (19) is realized through modification of the base forward policy via the multiplication
by the ratio of the classifier outputs 𝑝(𝑦|𝑠′)∕𝑝(𝑦|𝑠). The ground truth (theoretically optimal) non-terminal state classifier
𝑝(𝑦|𝑠) by Proposition 5.2 satisfies (18) which ensures that the guided policy (19) is valid, i.e. for any state 𝑠 ∈ 

∑
𝑠′∶(𝑠→𝑠′)∈

𝑝𝐹 (𝑠′|𝑠, 𝑦) =
∑

𝑠′∶(𝑠→𝑠′)∈
𝑝𝐹 (𝑠′|𝑠)𝑝(𝑦|𝑠

′)
𝑝(𝑦|𝑠) = 1

𝑝(𝑦|𝑠)
∑

𝑠′∶(𝑠→𝑠′)∈
𝑝𝐹 (𝑠′|𝑠)𝑝(𝑦|𝑠′)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝑝(𝑦|𝑠) by Proposition 5.2

= 1. (110)

In practice, the ground truth values of 𝑝(𝑦|𝑠) are unavailable. Instead, an approximation 𝑄𝜙(𝑦|𝑠) ≈ 𝑝(𝑦|𝑠) is learned.
Equation (18) might not hold for the learned classifier 𝑄𝜙, but we still wish to use 𝑄̃𝜙 for classifier guidance in practice.
In order to ensure that the classifier-guided policy is valid in practice even when the approximation 𝑄𝜙(𝑦|𝑠) of the
classifier 𝑝(𝑦|𝑠) is used, we implement guidance as described below.
First, we express the guided policy (19) in terms of log-probabilities:

log 𝑝𝐹 (𝑠′|𝑠, 𝑦) = log 𝑝𝐹 (𝑠′|𝑠) + log 𝑝(𝑦|𝑠′) − log 𝑝(𝑦|𝑠). (111)
Parameterizing distributions through log-probabilities is common practice in probabilistic modeling: GFlowNet forward
policies [36, 63] and probabilistic classifiers are typically parameterized by deep neural networks that output logits
(unnormalized log-probabilities).
Second, in the log-probability parameterization the guided policy (19) can be equivalently expressed as

𝑝𝐹 (𝑠′|𝑠, 𝑦) =
[
sof tmax

(
log 𝑝𝐹 (⋅|𝑠) + log 𝑝(𝑦|⋅) − log 𝑝(𝑦|𝑠))]𝑠′ (112)

=
exp

(
log 𝑝𝐹 (𝑠′|𝑠) + log 𝑝(𝑦|𝑠′) − log 𝑝(𝑦|𝑠))

∑
𝑠′′∶(𝑠→𝑠′′)∈ exp

(
log 𝑝𝐹 (𝑠′′|𝑠) + log 𝑝(𝑦|𝑠′′) − log 𝑝(𝑦|𝑠)) . (113)

In theory, the softmax operation can be replaced with simple exponentiation, i.e. the numerator in (113) is sufficient
on its own since Proposition 5.2 ensures that the sum in the denominator equals to 1. However, using the softmax is
beneficial in practice when we substitute learned classifier 𝑄𝜙(𝑦|𝑠) instead of the ground truth classifier 𝑝(𝑦|𝑠). Indeed
when 𝑄𝜙(𝑦|𝑠) does not satisfy (18), the softmax operation ensures that the guided policy

𝑝𝐹 (𝑠′|𝑠, 𝑦) =
[
sof tmax

(
log 𝑝𝐹 (⋅|𝑠) + log𝑄𝜙(𝑦|⋅) − log𝑄𝜙(𝑦|𝑠)

)]
𝑠′ (114)

is valid (i.e. probabilities sum up to 1 over 𝑠′). The fact the softmax expression is valid in theory ensures that policy
(114) guided by 𝑄𝜙(𝑦|𝑠) approaches the ground truth policy (guided by 𝑝(𝑦|𝑠)) as 𝑄𝜙(𝑦|𝑠) approaches 𝑝(𝑦|𝑠) throughout
training.

28

Compositional Sculpting of Iterative Generative Processes

E Experiment details

E.1 2D Distributions with GFlowNets

The base GFlowNet forward policies 𝑝𝑖,𝐹 (𝑠′|𝑠; 𝜃) were parameterized as MLPs with 2 hidden layers and 256 units in
each hidden layer. The cell coordinates of a state 𝑠 on the 2D 32 × 32 grid were one-hot encoded. The dimensionality of
the input was 2 ⋅ 32. The outputs of the forward policy network were the logits of the softmax distribution over 3 action
choices: 1) move down; 2) move right; 3) stop.
We trained base GFlowNets with the trajectory balance loss [63]. We fixed the uniform backward policy in the trajectory
balance objective. We used Adam optimizer [64] with learning rate 0.001, and pre-train the base models for 20 000
steps with batch size 16 (16 trajectories per batch). The log of the total flow log𝑍𝜃 was optimized with Adam with a
learning rate 0.1. In order to promote exploration in trajectory sampling for the trajectory balance objective, we used
the sampling policy which takes random actions (uniformly) with probability 0.05 but, otherwise, follows the current
learned forward policy.
The classifier was parameterized as MLP with 2 hidden layers and 256 units in each hidden layer. The inputs to the
classifier were one-hot encoded cell coordinates, terminal state flag ({0, 1}), and log(𝛼∕(1−𝛼)) (in the case of parameterized
operations). The classifier outputs were the logits of the joint label distribution 𝑄̃𝜙(𝑦1,… , 𝑦𝑛|𝑠) for non-terminal states
𝑠 and the logits of the marginal label distribution 𝑄̃𝜙(𝑦1|𝑥) for terminal states 𝑥.
We trained the classifier with the loss described in Section 5.2. We used Adam with learning rate 0.001. We performed
15 000 training steps with batch size 64 (64 trajectories sampled from each of the base models per training step). We
updated the target network parameters 𝜙 as the exponential moving average (EMA) of 𝜙 with the smoothing factor
0.995. We linearly increased the weight 𝛾(step) of the non-terminal state loss from 0 to 1 throughout the first 3 000
steps and kept constant 𝛾 = 1 afterward. For the 𝛼-parameterized version of the classifier (Section A), we used the
following sampling scheme for 𝛼: 𝑧 ∼ 𝑈 [−3.5, 3.5], 𝛼 = 1

1+exp(−𝑧) .
Quantitative evaluation. For each of the composite distributions shown in Figure 3 we evaluated the L1-distance
𝐿1(𝑝method, 𝑝GT) =

∑
𝑥∈ |𝑝method(𝑥) − 𝑝GT(𝑥)| between the distribution 𝑝method induced by the classifier-guided policy

and the ground-truth composition distribution 𝑝GT computed from the known base model probabilities 𝑝𝑖. The evaluation
results are presented below.
Figure 3 top row. 𝑝1 ⊗ 𝑝2: 𝐿1 = 0.071; 𝑝1◑ 𝑝2: 𝐿1 = 0.086; 𝑝1◑ 0.95 𝑝2: 𝐿1 = 0.167.
Figure 3 bottom row. 𝑝(𝑥|𝑦1 = 1, 𝑦2 = 2): 𝐿1 = 0.076; 𝑝(𝑥|𝑦1 = 1, 𝑦2 = 2, 𝑦3 = 3): 𝐿1 = 0.087; 𝑝(𝑥|𝑦1 = 2, 𝑦2 = 2):
𝐿1 = 0.112; 𝑝(𝑥|𝑦1=2, 𝑦2=2, 𝑦3=2): 𝐿1 = 0.122.
Figure F.6 shows the distance between the composition and the ground truth as a function of the number of training
steps for the classifier as well as the terminal and non-terminal classifier learning curves.

E.2 Molecule Generation
Reward normalization. We used the following normalization rules for SEH, SA, and QED rewards in the molecule
domain.

• SEH = SEHraw∕8;
• SA = 10−SAraw

9 ;
• QED = QEDraw.

Training details and hyperparameters. The base GFlowNet policies were parameterized as graph neural networks
with Graph Transformer architecture [60]. We used 6 transformer layers with an embedding of size 128. The input
to the Graph Transformer was the graph of fragments with node attributes describing fragments and edge attributes
describing attachment points of the edges.
The base GFlowNets were trained with trajectory balance loss. We used Adam optimizer. For the policy network
𝑝𝐹 (𝑠′|𝑠; 𝜃), we set the initial learning rate 0.0005 and exponentially decayed with the factor 2step∕20 0000. For the log of the
total flow log𝑍𝜃 we set the initial learning rate 0.0005 and exponentially decayed with the factor 2step∕50 000. We trained
the base GFlowNets for 15 000 steps with batch size 64 (64 trajectories per batch). In order to promote exploration
in trajectory sampling for the trajectory balance objective, we used the sampling policy which takes random actions
(uniformly) with probability 0.1 but, otherwise, follows the current learned forward policy.

29

Compositional Sculpting of Iterative Generative Processes

The classifier was parameterized as a graph neural network with Graph Transformer architecture. We used 4 transformer
layers with embedding size 128. The inputs to the classifier were the fragment graph, terminal state flag ({0, 1}), and
log(𝛼∕(1−𝛼)) (in case of parameterized operations). The classifier outputs were the logits of the joint label distribution
𝑄̃𝜙(𝑦1,… , 𝑦𝑛|𝑠) for non-terminal states 𝑠 and the logits of the marginal label distribution 𝑄̃𝜙(𝑦1|𝑥) for terminal states 𝑥.
We trained the classifier with the loss described in Section 5.2. We used Adam with learning rate 0.001. We performed
15 000 training steps with batch size 8 (8 trajectories sampled from each of the base models per training step). We
updated the target network parameters 𝜙 as the exponential moving average (EMA) of 𝜙 with the smoothing factor
0.995. We linearly increased the weight 𝛾(step) of the non-terminal state loss from 0 to 1 throughout the first 4 000
steps and kept constant 𝛾 = 1 afterward. For the 𝛼-parameterized version of the classifier (Section A), we used the
following sampling scheme for 𝛼: 𝑧 ∼ 𝑈 [−5.5, 5.5], 𝛼 = 1

1+exp(−𝑧) .

E.3 Colored MNIST Generation via Diffusion Models

The colored MNIST experiment in Section 6.3 follows the method for composing diffusion models introduced in
Section 5.3. The three base diffusion models were trained on colored MNIST digits generated from the original MNIST
dataset. These colored digits were created by mapping MNIST images from their grayscale representation to either
the red or green channel, leaving the other channels set to 0. For Figure 6 we post-processed the red and green images
generated by the base models and compositions into beige and cyan respectively, which are more accessible colors for
colorblind people.
Models, training details, and hyperparameters. The base diffusion models were defined as VE SDEs [34]. Their
score models were U-Net [65] networks consisting of 4 convolutional layers with 64, 128, 256, and 256 channels and 4
matching transposed convolutional layers. Time was encoded using 256-dimensional Gaussian random features [66].
The score model was trained using Adam optimizer [64] with a learning rate decreasing exponentially from 10−2 to
10−4. We performed 200 training steps with batch size 32.
The first classifier 𝑄̃(𝑦1, 𝑦2|𝑥𝑡) was a convolutional network consisting of 2 convolutional layers with 64 and 96 channels
and three hidden layers with 512, 256 and 256 units. This classifier is time-dependent and used 128-dimensional
Gaussian random features to embed the time. The output was a 3x3 matrix encoding the predicted log-probabilities.
The classifier was trained on trajectories sampled from the reverse SDE of the base diffusion models using the AdaDelta
optimizer [67] with a learning rate of 1.0. We performed 700 training steps with batch size 128. For the first 100 training
steps the classifier was only trained on terminal samples.
The second conditional classifier 𝑄̃(𝑦3|𝑦1, 𝑦2, 𝑥𝑡) was a similar convolutional network with 2 convolutional layers with
64 channels and two hidden layers with 256 units. This classifier is conditioned both on time and on (𝑦1, 𝑦2). The time
variable was embedded used 128-dimensional Gaussian random features. The (𝑦1, 𝑦2) variables were encoded using a
1-hot encoding scheme. The output of the classifier was the three predicted log-probabilities for 𝑦3. Contrary to the first
classifier, this one was not trained on the base diffusion models but rather on samples from the posterior 𝑝(𝑥|𝑦1, 𝑦2). It’s
loss function was:

𝑐(𝜙) = 𝔼
(𝑥0,𝑥𝑡,𝑦2,𝑦1,𝑡)∼𝑝(𝑥0,𝑥𝑡|𝑦1,𝑦2)𝑝(𝑦1)𝑝(𝑦2)𝑝(𝑡)

⎡⎢⎢⎣

𝑚∑
𝑦3=1

−𝑤𝑦3 (𝑥0) log 𝑄̃𝜙(𝑦3|𝑦1, 𝑦2, 𝑥𝑡)
⎤⎥⎥⎦

(115)

where 𝑤𝑦3 (𝑥0) is estimated using the first classifier. The classifier was trained using the AdaDelta optimizer [67] with a
learning rate of 0.1. We performed 200 training steps with batch size 128.
Sampling. Sampling from both the individual base models and the composition was done using the Predictor-Corrector
sampler [34]. We performed sampling over 500 time steps to generate the samples shown in Figure 6. The samples
used to train the classifier were generated using the same method.
When sampling from the composition we found that using scaling for the classifier guidance was generally necessary to
achieve high-quality results. Without scaling, the norm of the gradient over the first and second classifier was too small
relative to the gradient predicted by the score function, and hence did not sufficiently steer the mixture towards samples
from the posterior. Experimentally, we found that scaling factor 10 for the first classifier and scaling factor 75 for the
second produced high quality results.

30

Compositional Sculpting of Iterative Generative Processes

(a) 𝑝1 (b) 𝑝2 (c) 𝑝1 ⊗ 𝑝2 (d) 𝑝1 ◑ 𝑝2 (e) 𝑝1 ◐ 𝑝2

Figure F.1: Diffusion model composition on colored MNIST. (a,b) samples from base diffusion models. (c-e) samples
from the resulting harmonic mean and contrast compositions.

(a) 𝑝{0,…,5} (b) 𝑝{4,…,9} (c) 𝑝{0,…,5} ⊗ 𝑝{4,…,9} (d) 𝑝{0,…,5} ◑ 𝑝{4,…,9} (e) 𝑝{0,…,5} ◐ 𝑝{4,…,9}

Figure F.2: Diffusion model composition on MNIST. (a,b) samples from base diffusion models. (c-e) samples from
the resulting harmonic mean and contrast compositions.
F Additional Results

F.1 Binary Operations for MNIST Digit Generation via Diffusion Models

Here we present a variant of the colored digit generation experiment from Section 6.3 using 2 diffusion models. This
allows us to better illustrate the harmonic mean and contrast operations on this image domain. In a similar fashion to
the experiment in Section 6.3, we trained two diffusion models to generate colored MNIST digits. 𝑝1 was trained to
generate red and green 0 digits and 𝑝2 was trained to generate green 0 and 1 digits. As before, we used post-processing
to map green to cyan and red to beige.
Implementation details. The diffusion models used in this experiment and their training procedure were exactly the
same as in Section E.3. The sampling method used to obtain samples from the base models and their compositions was
also the same. We found that scaling the classifier guidance was generally required for high-quality results, and used a
scaling factor of 20 in this experiment.
The classifier was a convolutional network with 2 convolutional layers consisting of 32 and 64 channels and two hidden
layers with 512 and 128 units. The classifier’s time input was embedded using 128-dimensional Gaussian random
features. The output was a 2x2 matrix encoding the predicted log-probabilities 𝑄̃(𝑦1, 𝑦2 | 𝑥𝑡). The classifier was trained
on trajectories, sampled from the reverse SDE of the base diffusion models, using the AdaDelta optimizer [67] with a
learning rate of 0.1 and a decay rate of 0.97. We performed 200 training steps with batch size 128. For the first 100
training steps, the classifier was only trained on terminal samples.
Results. Figure F.1 shows samples obtained from the two trained diffusion models 𝑝1, 𝑝2 and from the harmonic mean
and contrast compositions of these models. We observe that the harmonic mean generates only cyan zero digits, because
this is the only type of digit on which both 𝑝1 and 𝑝2 have high density. The contrast 𝑝1◑ 𝑝2 generates beige zero digits
from 𝑝1. However, unlike 𝑝1, it does not generate cyan zero digits, as 𝑝2 has high density there. The story is similar for
𝑝1◐ 𝑝2, which generates cyan one digits from 𝑝2, but not zero digits due to 𝑝1 having high density over those.
F.2 MNIST Subset Generation via Diffusion Models

We report in this section on additional results for composing diffusion models on the standard MNIST dataset. We
trained two diffusion models: 𝑝{0,…,5} was trained to generate MNIST digits 0 through 5, and 𝑝{4,…,9} to generate
MNIST digits 4 through 9. The training procedure and models used in this experiment were the same as in Section F.1.
Figure F.2 shows samples obtained from the two diffusion models, from the harmonic mean, and from the contrast
compositions of these models. We observe that the harmonic mean correctly generates mostly images on which both

31

Compositional Sculpting of Iterative Generative Processes

diffusion models’ sampling distributions have high probability, i.e. digits 4 and 5. For the contrasts we see that in both
cases digits are generated that have high probability under one model but low probability under the other. We observe
some errors, namely some 9’s being generated by the harmonic mean and some 4’s being generated by the contrast
𝑝{0,…,5}◐ 𝑝{4,…,9}. This is likely because 4 and 9 are visually similar, causing the guiding classifier to misclassify them,
and generate them under the wrong composition.
We also present binary operations between three distributions. In Figure F.3 and F.4, 𝑝0 models even digits, 𝑝1 models
odd digits, and 𝑝2 models digits that are divisible by 3. We color digits {0, 6} purple, {3, 9} blue, {4, 8} orange, and
{1, 5, 7} beige. In Figure F.3, harmonic mean of 𝑝0 and 𝑝2 generates the digit 0 and 6, whereas the contrast of 𝑝0 with
𝑝2 shows even digits non-divisible by 3 (𝑝0◑ 𝑝2 = {4, 8}), and odd numbers that are divisible by 3 (𝑝0◐ 𝑝2 = {3, 9}).
We observe that the samples from 𝑝0 ⊗ 𝑝2 inherit artifacts from the base generator for 𝑝2 (the thin digit 0), which shows
the impact that the base models have on the composite distribution. In Figure F.4 we present similar results between odd
digits ({5, 3, 5, 7, 9}. We noticed that samples from both 𝑝1◑ 𝑝2 and 𝑝1◐ 𝑝2 includes a small number of the digit 3.

(a) 𝑝0: Even Digits (b) 𝑝2: {0, 3, 6, 9} (c) 𝑝0 ⊗ 𝑝2 (d) 𝑝0 ◑ 𝑝2 (e) 𝑝0 ◐ 𝑝2

Figure F.3: Composing even digits and multiples of three. (a,b) samples from base diffusion models. (c-e) samples
from the resulting harmonic mean and contrast compositions.

(a) 𝑝1: Odd Digits (b) 𝑝2: {0, 3, 6, 9} (c) 𝑝1 ⊗ 𝑝2 (d) 𝑝1 ◑ 𝑝2 (e) 𝑝1 ◐ 𝑝2

Figure F.4: Composing odd digits and multiples of three. (a,b) samples from base diffusion models. (c-e) samples
from the resulting harmonic mean and contrast compositions.

F.3 Chaining: Sequential Composition of Multiple Distributions

We present results on chaining binary composition operations sequentially on a custom colored MNIST dataset.
Setup. We start with three base generative models that are trained to generate 𝑝1, 𝑝2 and 𝑝3 in Figure F.5. Specifically,
𝑝1 is a uniform distribution over digits {0, 1, 2, 3, 4, 5}, 𝑝2 is a uniform distribution over even digits {0, 2, 4, 6, 8}, and 𝑝3is a uniform distribution over digits divisible by 3: {0, 3, 6, 9}. Note that we use a different color for each digit consistent
across 𝑝1, 𝑝2, 𝑝3. Our goal is to produce combinations of chained binary operations involving all three distributions,
where two of them were combined first, then in a second step, combined with the third distribution through either
harmonic mean ⊗ or contrast ◑ .
Binary Classifier Training. Consider, for example, the operation (𝑝1 ⊗ 𝑝2)◑ 𝑝3. We use the same classifier training
procedure for 𝑝1 versus 𝑝2, as well as the composite model (𝑝1 ⊗ 𝑝2) versus 𝑝3, except that in the later case we sample
from composite model as a whole. Our classifier training simultaneously optimizes the terminal classifier and the
intermediate state classifier.
Implementation Detains. We adapted diffusion model training code for the base distributions from [33]. Our diffusion
model used a UNet backbone with four latent layers on both the contracting and the expansive path. The contracting
channel dimensions were [64, 128, 256, 256] with the kernel size 3, and strides [1, 2, 2, 2]. The time embedding used

32

Compositional Sculpting of Iterative Generative Processes

a mixture of 128 sine and cosine feature pairs, with a total of 256 dimensions. These features were passed through a
sigmoid activation and then expanded using a different linear head for each layer. The activations were then added to
the 2D feature maps at each layer channel-wise. We used a fixed learning rate of 0.01 with Adam optimizer [64].
We adapted the classifier training code from the MNIST example in Pytorch [68]. Our binary classifier has two latent
layers with channel dimensions [32, 64], stride 1 and kernel width of 3. We use dropout on both layers: 𝑝1 = 25%, 𝑝2 =
50%. We train the network for 200 epochs on data sampled online in batches of 256 from each source model, and treat
the composite model in the second step the same way. We use the Adadelta [67] optimizer with the default setting of
learning rate 1.0.
Sampling. We generate samples according to Sec 5.3 and multiply the gradient by 𝛼 = 20.
Results. Row 3 from Figure F.5 contains mostly zeros with a few exceptions. This is in agreement with harmonic
mean being symmetric. In 𝑝1 ⊗ (𝑝2 ⊗ 𝑝3), digits that are outside of the intersection still appear with thin strokes.
F.4 Classifier Learning Curves and Training Time

We empirically evaluated classifier training time and learning curves. The results are shown in Figures F.6, F.7, F.8 and
Tables F.1, F.2.
Figures F.6, F.7, F.8 show the cross-entropy loss of the classifier for terminal (21) and non-terminal states (23) as a
function of the number of training steps for the GFlowNet 2D grid domain, the molecular generation domain, and the
Colored MNIST digits domain respectively. They show that the loss drops quickly but remains above 0. Figure F.6
further shows the distances between the learned compositions and the ground truth distributions as a function of the
number of training steps of the classifier. For all compositions, as the classifier training progresses, the distance to the
ground truth distribution decreases. Compared to the distance at initialization we observe almost an order of magnitude
distance reduction by the end of the training.
The runtime of classifier training is shown in Tables F.1 and F.2. We report the total runtime, as well as separate
measurements for the time spent sampling trajectories and training the classifier. The classifier training time is comparable
to the base generative model training time. However, most of the classifier training time (more than 70%, or even 90%)
was spent on sampling trajectories from base generative models. Our implementation of the training could be improved
in this regard, e.g. by sampling a smaller set of trajectories once and re-using trajectories for training and by reducing
the number of training steps (the loss curves in Figures F.6, F.7, F.8 show that classification losses plateau quickly).
F.5 Analysis of Sample Diversity of Base GFlowNets in Molecule Generation Domain

In order to assess the effect of the reward exponent 𝛽 on mode coverage and sample diversity, we evaluated samples
generated from GFlowNets pre-trained with different values of 𝛽. The results are in Tables F.3 and F.4. The details
of the evaluation and the reported metrics are described in the table captions. As expected, larger reward exponents
shift the learned distributions towards high-scoring molecules (the total number of molecules with scores above the
threshold increases). For ‘SA’ and ‘QED’ models we don’t observe negative effects of large 𝛽 on sample diversity and
mode coverage: the average pairwise similarity of top 1 000 molecules doesn’t grow as 𝛽 increases and the ratio of
Tanimoto-separated modes remains high. For ‘SEH’ models we observe a gradual increase in the average pairwise
similarity of top 1 000 molecules and a gradual decrease in the ratio of Tanimoto-separated modes. However, the total
number of separated modes grows as 𝛽 increases, which indicates that larger reward exponents do not lead to mode
dropping.

33

Compositional Sculpting of Iterative Generative Processes

(a) 𝑝1{0 − 5} (b) 𝑝2{0, 2, 4, 6, 8} (c) 𝑝3{0, 3, 6, 9} (d) 𝑝1 ⊗ 𝑝2 (e) 𝑝2 ⊗ 𝑝3 (f) 𝑝1 ⊗ 𝑝3

(g) 𝑝1 ◑ 𝑝2 (h) 𝑝2 ◑ 𝑝3 (i) 𝑝1 ◐ 𝑝3 (j) 𝑝1 ◐ 𝑝2 (k) 𝑝2 ◐ 𝑝3 (l) 𝑝1 ◑ 𝑝3

𝑝1 ⊗ (𝑝2 ⊗ 𝑝3) 𝑝2 ⊗ (𝑝1 ⊗ 𝑝3) 𝑝3 ⊗ (𝑝1 ⊗ 𝑝2)

𝑝1 ◑ (𝑝2 ◑ 𝑝3) 𝑝1 ◑ (𝑝2 ⊗ 𝑝3) 𝑝1 ◑ (𝑝2 ◐ 𝑝3) 𝑝2 ◑ (𝑝1 ◑ 𝑝3) 𝑝2 ◑ (𝑝1 ⊗ 𝑝3) 𝑝2 ◑ (𝑝1 ◐ 𝑝3)

𝑝3 ◑ (𝑝1 ◑ 𝑝2) 𝑝3 ◑ (𝑝1 ⊗ 𝑝2) 𝑝3 ◑ (𝑝1 ◐ 𝑝2) 𝑝1 ⊗ (𝑝1 ◑ 𝑝3) 𝑝1 ⊗ (𝑝2 ◐ 𝑝3) 𝑝2 ⊗ (𝑝1 ◑ 𝑝3)

𝑝2 ⊗ (𝑝1 ◐ 𝑝3) 𝑝3 ⊗ (𝑝1 ◑ 𝑝2) 𝑝3 ⊗ (𝑝1 ◐ 𝑝2) 𝑝1 ⊗ (𝑝2 ◑ 𝑝3) 𝑝1 ◐ (𝑝2 ⊗ 𝑝3) 𝑝2 ◐ (𝑝1 ⊗ 𝑝3)

Figure F.5: Chaining Binary Operations. (a-c) Samples from 3 pre-trained diffusion models. (d-l) Samples from
binary compositions. (row 3) The harmonic mean between all three. (row 4 and beyond) various ways to chain the
operations. Parentheses indicate the order of composition.

34

Compositional Sculpting of Iterative Generative Processes

0 2500 5000 7500 10000 12500 15000

Steps
0.500
0.525
0.550
0.575
0.600
0.625
0.650
0.675
0.700
0.725

Te
rm

ina
lst

ate
los

s

Terminal state loss
Non-terminal state loss

40.00
41.56
43.11
44.67
46.22
47.78
49.33
50.89
52.44
54.00

No
n-t

erm
ina

lst
ate

los
s

0 2500 5000 7500 10000 12500 15000

Steps
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Di
str

ibu
tio

nd
ista

nce
(L

1)

L1
(1
2
p1 +

1
2
p2,GT(12p1 + 1

2
p2)

)

L1
(
p1⊗ p2,GT(p1⊗ p2)

)

L1
(
p1◐ p2,GT(p1◐ p2)

)

L1
(
p1◐0.05 p2,GT(p1◐0.05 p2)

)

Figure F.6: Training curves of the classifier 𝑄̃𝜙(𝑦1, 𝑦2|⋅) in GFlowNet 2D grid domain. The experimental setup
corresponds to Section 6.1 and Figure 3 (top row). Left: Terminal state loss and non-terminal state loss (as defined
in Algorithm 1) as functions of the number of training steps. Right: 𝐿1 distance between learned distributions
(compositions obtained through classifier-based mixture and guidance) and ground-truth composition distributions as
the function of the number of training steps. 𝐿1(𝑝, 𝑞) =

∑
𝑥∈ |𝑝(𝑥) − 𝑞(𝑥)|.

0 2500 5000 7500 10000 12500 15000

Steps
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
rm

ina
lst

ate
los

s

Terminal state loss
Non-terminal state loss

0.00

5.62

11.25

16.88

22.50

28.12

33.75

39.38

45.00

No
n-t

erm
ina

lst
ate

los
s

Figure F.7: Training curves of the classifier 𝑄̃𝜙(𝑦1, 𝑦2|⋅)in GFlowNet molecule generation domain. The experi-
mental setup corresponds to Section 6.2 and Figure 4 (a-c).
The curves show terminal state loss and non-terminal state
loss (as defined in Algorithm 1) as functions of the num-
ber of training steps.

0 25 50 75 100 125 150 175 200

Steps
0.000
0.125
0.250
0.375
0.500
0.625
0.750
0.875
1.000
1.125
1.250

Te
rm

ina
lst

ate
los

s
0.00
0.45
0.90
1.35
1.80
2.25
2.70
3.15
3.60
4.05
4.50

No
n-t

erm
ina

lst
ate

los
s

Terminal state loss
Non-terminal state loss

Figure F.8: Training curves of the classifier 𝑄̃𝜙(𝑦1, 𝑦2|⋅)in diffusion MNIST image generation domain. The ex-
perimental setup corresponds to Section F.1 and Figure
F.1. The curves show terminal state loss and non-terminal
state loss (as defined in equations (29), (31)) as functions
of the number of training steps. The non-terminal loss op-
timization begins after the first 100 training steps (shown
by the black dashed line).

Table F.1: Summary of base GFlowNet and classifier train-
ing time in molecule generation domain. The experimental
setup corresponds to Section 6.2 & Figure 4 (a-c). All
models were trained with a single GeForce RTX 2080 Ti
GPU.

Base GFlowNet training steps 20 000
Base GFlowNet batch size 64
Base GFlowNet training elapsed real time 6h 47m 11s
Classifier training steps 15 000
Classifier batch size 8 trajectories per base model

(all states used)
Classifier training total elapsed real time 9h 2m 19s
Classifier training data generation time 6h 35m 58s (73%)

Table F.2: Summary of base diffusion and classifier training
time in MNIST image generation domain. The experimen-
tal setup corresponds to Section F.1 & Figure F.1 in the
main paper. All models were trained with a single Tesla
V100 GPU.

Base diffusion training steps 200
Base diffusion batch size 32
Base diffusion training elapsed real time 10m 6s
Classifier training steps 200
Classifier batch size 128 trajectories per base model

(35 time-steps per trajectory)
Classifier training total elapsed real time 30m 12s
Classifier training data generation time 29m 22s (97%)

35

Compositional Sculpting of Iterative Generative Processes

Table F.3: Average pairwise similar-
ity [36] of molecules generated by
GFlowNets trained on ’SEH’, ’SA’, ’QED’
rewards at different values of 𝛽. For each
combination (reward, 𝛽) a GFlowNet was
trained with the corresponding reward
𝑅(𝑥)𝛽 . Then, 5 000 molecules were gen-
erated. The numbers in the table reflect
the average pairwise Tanimoto similarity
of top 1 000 molecules (selected accord-
ing to the target reward function).

SEH SA QED
𝛽 = 1 0.527 0.539 0.480
𝛽 = 4 0.529 0.527 0.464
𝛽 = 10 0.535 0.500 0.438
𝛽 = 16 0.548 0.465 0.422
𝛽 = 32 0.585 0.411 0.398
𝛽 = 96 0.618 0.358 0.404

Table F.4: Number of Tanimoto-separated modes found above reward thresh-
old. For each combination (reward, 𝛽) a GFlowNet was trained with the
corresponding reward 𝑅(𝑥)𝛽 , and then 5 000 molecules were generated. Cell
format is "𝐴∕𝐵", where 𝐴 is the number of Tanimoto-separated modes found
above the reward threshold, and 𝐵 is the total number of generated molecules
above the threshold. Analogously to Figure 14 in [36], we consider hav-
ing found a new mode representative when a new molecule has Tanimoto
similarity smaller than 0.7 to every previously found mode’s representative
molecule. Reward thresholds (in [0, 1], normalized values) are ’SEH’: 0.875,
’SA’: 0.75, ’QED’: 0.75. Note that the normalized threshold of 0.875 for
’SEH’ corresponds to the unnormalized threshold of 7 used in [36].

SEH SA QED
𝛽 = 1 15 ∕ 17 37 ∕ 37 0 ∕ 0
𝛽 = 4 12 ∕ 17 82 ∕ 82 0 ∕ 0
𝛽 = 10 85 ∕ 109 332 ∕ 337 18 ∕ 18
𝛽 = 16 190 ∕ 280 886 ∕ 910 253 ∕ 253
𝛽 = 32 992 ∕ 1821 2859 ∕ 3080 3067 ∕ 3124
𝛽 = 96 1619 ∕ 4609 4268 ∕ 4983 4470 ∕ 4980

Table F.5: Estimated pairwise earthmover’s distances between distributions shown in Table 1.
y=SEH y=SA y=QED y=SEH,SA y=SEH,QED y=SA,QED y=SEH,SA,QED y=SEH × 3 y=SA × 3 y=QED × 3

y=SEH 0 4.42 5.77 3.39 4.20 4.88 4.10 2.46 4.44 5.73
y=SA 4.42 0 5.88 3.26 5.15 4.59 4.20 4.39 2.55 5.89
y=QED 5.77 5.88 0 5.40 4.02 3.85 4.20 5.80 5.90 3.20
y=SEH,SA 3.39 3.26 5.40 0 4.25 4.19 3.68 3.39 3.30 5.39
y=SEH,QED 4.20 5.15 4.02 4.25 0 3.80 3.67 4.22 5.19 4.00
y=SA,QED 4.88 4.59 3.85 4.19 3.80 0 3.65 4.91 4.59 3.87
y=SEH,SA,QED 4.10 4.20 4.20 3.68 3.67 3.65 0 4.12 4.23 4.20
y=SEH × 3 2.46 4.39 5.80 3.39 4.22 4.91 4.12 0 4.43 5.73
y=SA × 3 4.44 2.55 5.90 3.30 5.19 4.59 4.23 4.43 0 5.90
y=QED × 3 5.73 5.89 3.20 5.39 4.00 3.87 4.20 5.73 5.90 0

36

	Introduction
	Background
	Generative Flow Networks (GFlowNets)
	Diffusion Models
	Classifier Guidance in Diffusion Models
	``Energy'' Operations

	Related Work
	Compositional Sculpting of Generative Models
	Binary Composition Operations
	Compositional Sculpting: General Approach

	Compositional Sculpting of Iterative Generative Processes
	Composition of GFlowNets
	Classifier Training (GFlowNets)
	Composition of Diffusion Models
	Classifier Training (Diffusion Models)

	Experiments
	2D Distributions via GFlowNet
	Molecule Generation via GFlowNet
	Colored MNIST Generation via Diffusion Models

	Conclusion
	Classifier Guidance for Parameterized Operations
	Analysis of Compositional Sculpting and Energy Operations
	Proofs and Derivations
	Proof of Proposition 5.1
	Proof of Proposition 5.2
	Proof of Theorem 5.3
	Detailed Derivation of Classifier Training Objective
	Assumptions and Proof of Proposition 5.4
	Proof of Theorem 5.5

	Implementation Details
	Classifier Guidance in GFlowNets

	Experiment details
	2D Distributions with GFlowNets
	Molecule Generation
	Colored MNIST Generation via Diffusion Models

	Additional Results
	Binary Operations for MNIST Digit Generation via Diffusion Models
	MNIST Subset Generation via Diffusion Models
	Chaining: Sequential Composition of Multiple Distributions
	Classifier Learning Curves and Training Time
	Analysis of Sample Diversity of Base GFlowNets in Molecule Generation Domain

